Home
Class 12
MATHS
if A=[{:(costheta,sin theta ),(-sin thet...

`if A=[{:(costheta,sin theta ),(-sin theta,costheta):}]`, then show that : `A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( A^2 = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix} \) for the matrix \( A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \), we will perform matrix multiplication step by step. ### Step 1: Write down the matrix A Given: \[ A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 2: Multiply A by itself To find \( A^2 \), we need to calculate \( A \times A \): \[ A^2 = A \times A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \times \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 3: Calculate the elements of the resulting matrix We will calculate each element of the resulting matrix \( A^2 \). 1. **Element at (1,1)**: \[ A_{11} = \cos \theta \cdot \cos \theta + \sin \theta \cdot (-\sin \theta) = \cos^2 \theta - \sin^2 \theta \] 2. **Element at (1,2)**: \[ A_{12} = \cos \theta \cdot \sin \theta + \sin \theta \cdot \cos \theta = 2 \sin \theta \cos \theta \] 3. **Element at (2,1)**: \[ A_{21} = -\sin \theta \cdot \cos \theta + \cos \theta \cdot (-\sin \theta) = -\sin \theta \cos \theta - \sin \theta \cos \theta = -2 \sin \theta \cos \theta \] 4. **Element at (2,2)**: \[ A_{22} = -\sin \theta \cdot \sin \theta + \cos \theta \cdot \cos \theta = \cos^2 \theta - \sin^2 \theta \] ### Step 4: Combine the results into a matrix Now we can write the resulting matrix \( A^2 \): \[ A^2 = \begin{pmatrix} \cos^2 \theta - \sin^2 \theta & 2 \sin \theta \cos \theta \\ -2 \sin \theta \cos \theta & \cos^2 \theta - \sin^2 \theta \end{pmatrix} \] ### Step 5: Use trigonometric identities Using the double angle formulas: - \( \cos 2\theta = \cos^2 \theta - \sin^2 \theta \) - \( \sin 2\theta = 2 \sin \theta \cos \theta \) We can rewrite \( A^2 \): \[ A^2 = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix} \] ### Conclusion Thus, we have shown that: \[ A^2 = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix} \]

To show that \( A^2 = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix} \) for the matrix \( A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \), we will perform matrix multiplication step by step. ### Step 1: Write down the matrix A Given: \[ A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

If A=[[cos 2 theta, sin 2 theta],[-sin2theta, cos2theta]] , find A^2

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Solve: sin2theta+sin4theta=costheta+cos3theta

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that: (sin2theta)/(1-cos2theta)=cottheta

Prove that sin(2theta)/(1-cos2theta)=cot theta

Solve sin2theta+costheta=0

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Prove that (costheta)/(1-sin theta)+(1-sin theta)/(cos theta)=2sec theta .