Home
Class 12
MATHS
if A=[{:(3,2,1),(1,2,3),(3,-6,1):}],B=[{...

`if A=[{:(3,2,1),(1,2,3),(3,-6,1):}],B=[{:(1,4,0),(2,-3,0),(1,2,0):}]`
`and C=[{:(1,2,3),(3,2,1),(8,7,9):}],`then find AB-AC.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( AB - AC \) where the matrices \( A \), \( B \), and \( C \) are given as follows: \[ A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \\ 3 & -6 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 4 & 0 \\ 2 & -3 & 0 \\ 1 & 2 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 8 & 7 & 9 \end{pmatrix} \] ### Step 1: Calculate \( AB \) To find \( AB \), we perform matrix multiplication: \[ AB = A \cdot B \] Calculating each element of the resulting matrix: - First row: - \( (3 \cdot 1 + 2 \cdot 2 + 1 \cdot 1) = 3 + 4 + 1 = 8 \) - \( (3 \cdot 4 + 2 \cdot -3 + 1 \cdot 2) = 12 - 6 + 2 = 8 \) - \( (3 \cdot 0 + 2 \cdot 0 + 1 \cdot 0) = 0 \) - Second row: - \( (1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1) = 1 + 4 + 3 = 8 \) - \( (1 \cdot 4 + 2 \cdot -3 + 3 \cdot 2) = 4 - 6 + 6 = 4 \) - \( (1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0) = 0 \) - Third row: - \( (3 \cdot 1 + -6 \cdot 2 + 1 \cdot 1) = 3 - 12 + 1 = -8 \) - \( (3 \cdot 4 + -6 \cdot -3 + 1 \cdot 2) = 12 + 18 + 2 = 32 \) - \( (3 \cdot 0 + -6 \cdot 0 + 1 \cdot 0) = 0 \) Thus, we have: \[ AB = \begin{pmatrix} 8 & 8 & 0 \\ 8 & 4 & 0 \\ -8 & 32 & 0 \end{pmatrix} \] ### Step 2: Calculate \( AC \) Next, we calculate \( AC \): \[ AC = A \cdot C \] Calculating each element of the resulting matrix: - First row: - \( (3 \cdot 1 + 2 \cdot 3 + 1 \cdot 8) = 3 + 6 + 8 = 17 \) - \( (3 \cdot 2 + 2 \cdot 2 + 1 \cdot 7) = 6 + 4 + 7 = 17 \) - \( (3 \cdot 3 + 2 \cdot 1 + 1 \cdot 9) = 9 + 2 + 9 = 20 \) - Second row: - \( (1 \cdot 1 + 2 \cdot 3 + 3 \cdot 8) = 1 + 6 + 24 = 31 \) - \( (1 \cdot 2 + 2 \cdot 2 + 3 \cdot 7) = 2 + 4 + 21 = 27 \) - \( (1 \cdot 3 + 2 \cdot 1 + 3 \cdot 9) = 3 + 2 + 27 = 32 \) - Third row: - \( (3 \cdot 1 + -6 \cdot 3 + 1 \cdot 8) = 3 - 18 + 8 = -7 \) - \( (3 \cdot 2 + -6 \cdot 2 + 1 \cdot 7) = 6 - 12 + 7 = 1 \) - \( (3 \cdot 3 + -6 \cdot 1 + 1 \cdot 9) = 9 - 6 + 9 = 12 \) Thus, we have: \[ AC = \begin{pmatrix} 17 & 17 & 20 \\ 31 & 27 & 32 \\ -7 & 1 & 12 \end{pmatrix} \] ### Step 3: Calculate \( AB - AC \) Now, we subtract \( AC \) from \( AB \): \[ AB - AC = \begin{pmatrix} 8 & 8 & 0 \\ 8 & 4 & 0 \\ -8 & 32 & 0 \end{pmatrix} - \begin{pmatrix} 17 & 17 & 20 \\ 31 & 27 & 32 \\ -7 & 1 & 12 \end{pmatrix} \] Calculating each element: - First row: - \( 8 - 17 = -9 \) - \( 8 - 17 = -9 \) - \( 0 - 20 = -20 \) - Second row: - \( 8 - 31 = -23 \) - \( 4 - 27 = -23 \) - \( 0 - 32 = -32 \) - Third row: - \( -8 - (-7) = -1 \) - \( 32 - 1 = 31 \) - \( 0 - 12 = -12 \) Thus, we have: \[ AB - AC = \begin{pmatrix} -9 & -9 & -20 \\ -23 & -23 & -32 \\ -1 & 31 & -12 \end{pmatrix} \] ### Final Answer The final result is: \[ AB - AC = \begin{pmatrix} -9 & -9 & -20 \\ -23 & -23 & -32 \\ -1 & 31 & -12 \end{pmatrix} \]

To solve the problem, we need to find \( AB - AC \) where the matrices \( A \), \( B \), and \( C \) are given as follows: \[ A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \\ 3 & -6 & 1 \end{pmatrix}, \quad ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

Given A=[{:(,1,2),(,-2,3):}], B=[{:(,-2,-1),(,1,2):}] and C=[{:(,0,3),(,2,-1):}] , find A+2B-3C.

Given, A=[{:(1,3,5),(-2,0,2),(0,0,-3):}], B = [{:(0,3),(-2,0),(0,-4):}] and C=[{:(4,1,-2),(3,2,1),(2,-1,7):}], find (whichever defined) (i)A+B. (ii)A+C.

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

Let A+B+C= [{:(,4,-1),(,0,1):}],4A+2B+C=[{:(,0,-1),(,-3,2):}]and 9A+3B+C=[{:(,0,2),(,2,1):}]"then find A"

if A[{:(1,3,-1),(2,2,-1),(3,0,-1):}]and B=[{:(-2,3,-1),(-1,2,-1),(-6,9,-4):}], then show that AB=BA.

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,