Home
Class 12
MATHS
(i) if A=[{:(4,-1,-4),(3,0,-4),(3,-1,-3)...

`(i) if A=[{:(4,-1,-4),(3,0,-4),(3,-1,-3):}],` then show that `A^(2)=I

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that \( A^2 = I \), where \( A = \begin{pmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{pmatrix} \) and \( I \) is the identity matrix. ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{pmatrix} \times \begin{pmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{pmatrix} \] ### Step 2: Perform the matrix multiplication We will calculate each element of the resulting matrix \( A^2 \): - **Element (1,1)**: \[ 4 \cdot 4 + (-1) \cdot 3 + (-4) \cdot 3 = 16 - 3 - 12 = 1 \] - **Element (1,2)**: \[ 4 \cdot (-1) + (-1) \cdot 0 + (-4) \cdot (-1) = -4 + 0 + 4 = 0 \] - **Element (1,3)**: \[ 4 \cdot (-4) + (-1) \cdot (-4) + (-4) \cdot (-3) = -16 + 4 + 12 = 0 \] - **Element (2,1)**: \[ 3 \cdot 4 + 0 \cdot 3 + (-4) \cdot 3 = 12 + 0 - 12 = 0 \] - **Element (2,2)**: \[ 3 \cdot (-1) + 0 \cdot 0 + (-4) \cdot (-1) = -3 + 0 + 4 = 1 \] - **Element (2,3)**: \[ 3 \cdot (-4) + 0 \cdot (-4) + (-4) \cdot (-3) = -12 + 0 + 12 = 0 \] - **Element (3,1)**: \[ 3 \cdot 4 + (-1) \cdot 3 + (-3) \cdot 3 = 12 - 3 - 9 = 0 \] - **Element (3,2)**: \[ 3 \cdot (-1) + (-1) \cdot 0 + (-3) \cdot (-1) = -3 + 0 + 3 = 0 \] - **Element (3,3)**: \[ 3 \cdot (-4) + (-1) \cdot (-4) + (-3) \cdot (-3) = -12 + 4 + 9 = 1 \] ### Step 3: Combine the results Putting all the calculated elements together, we get: \[ A^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \] ### Conclusion Thus, we have shown that \( A^2 = I \). ---

To solve the problem, we need to show that \( A^2 = I \), where \( A = \begin{pmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{pmatrix} \) and \( I \) is the identity matrix. ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{pmatrix} \times \begin{pmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=|{:(4,-1,-4),(3,0,-4),(3,-1,-3):}| , then show that A=A^(-1)

If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}] , then show that A^(3)=A^(-1) .

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

if A[{:(2,-3,-5),(-1,4,5),(1,-3,-4):}]and B=[{:(2,-2,-4),(-1,3,4),(1,-2,-3):}], then show that (i) AB=A and BA=B.

If A=[[4,-1,-4],[ 3, 0,-4],[ 3,-1,-3]] , show that A^2=I_3dot

if A=[{:(1,0,-3),(2,3,4),(-4,5,-2):}]and b=[{:(3,0,-1),(2,5,-4),(4,-1,2):}], then show that : (AB)'=B'A'

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

(i) if A=[{:(1,-1),(2,3):}], then show that A^(2)-4A+5I=O. (ii) if f(x)=x^(2)+3x-5and A=[{:(2,-1),(4,3):}], then find f(A).

If A=[(3,-3,4),(2,-3,4),(0,-1,1)] , then A^(-1)=

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0