Home
Class 12
MATHS
(i) if A=[{:(1,-1),(2,3):}],then show th...

`(i) if A=[{:(1,-1),(2,3):}],`then show that `A^(2)-4A+5I=O.`
` (ii) if f(x)=x^(2)+3x-5and A=[{:(2,-1),(4,3):}],`then find f(A).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will break it down into two parts as stated in the question. ### Part (i) We need to show that \( A^2 - 4A + 5I = O \), where \( O \) is the null matrix of order \( 2 \times 2 \). 1. **Given Matrix A**: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \] 2. **Calculate \( A^2 \)**: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} \] \[ = \begin{pmatrix} (1 \cdot 1 + -1 \cdot 2) & (1 \cdot -1 + -1 \cdot 3) \\ (2 \cdot 1 + 3 \cdot 2) & (2 \cdot -1 + 3 \cdot 3) \end{pmatrix} \] \[ = \begin{pmatrix} 1 - 2 & -1 - 3 \\ 2 + 6 & -2 + 9 \end{pmatrix} = \begin{pmatrix} -1 & -4 \\ 8 & 7 \end{pmatrix} \] 3. **Calculate \( 4A \)**: \[ 4A = 4 \cdot \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 4 & -4 \\ 8 & 12 \end{pmatrix} \] 4. **Calculate \( 5I \)** (where \( I \) is the identity matrix): \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies 5I = 5 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] 5. **Combine the results**: Now we need to compute \( A^2 - 4A + 5I \): \[ A^2 - 4A + 5I = \begin{pmatrix} -1 & -4 \\ 8 & 7 \end{pmatrix} - \begin{pmatrix} 4 & -4 \\ 8 & 12 \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] \[ = \begin{pmatrix} -1 - 4 + 5 & -4 + 4 + 0 \\ 8 - 8 + 0 & 7 - 12 + 5 \end{pmatrix} \] \[ = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O \] Thus, we have shown that \( A^2 - 4A + 5I = O \). ### Part (ii) We need to find \( f(A) \) where \( f(x) = x^2 + 3x - 5 \) and \( A = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix} \). 1. **Substituting A into f(x)**: \[ f(A) = A^2 + 3A - 5I \] 2. **Calculate \( A^2 \)**: \[ A^2 = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix} \] \[ = \begin{pmatrix} (2 \cdot 2 + -1 \cdot 4) & (2 \cdot -1 + -1 \cdot 3) \\ (4 \cdot 2 + 3 \cdot 4) & (4 \cdot -1 + 3 \cdot 3) \end{pmatrix} \] \[ = \begin{pmatrix} 4 - 4 & -2 - 3 \\ 8 + 12 & -4 + 9 \end{pmatrix} = \begin{pmatrix} 0 & -5 \\ 20 & 5 \end{pmatrix} \] 3. **Calculate \( 3A \)**: \[ 3A = 3 \cdot \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 6 & -3 \\ 12 & 9 \end{pmatrix} \] 4. **Calculate \( 5I \)**: \[ 5I = 5 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] 5. **Combine the results**: Now we compute \( f(A) = A^2 + 3A - 5I \): \[ f(A) = \begin{pmatrix} 0 & -5 \\ 20 & 5 \end{pmatrix} + \begin{pmatrix} 6 & -3 \\ 12 & 9 \end{pmatrix} - \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] \[ = \begin{pmatrix} 0 + 6 - 5 & -5 - 3 - 0 \\ 20 + 12 - 0 & 5 + 9 - 5 \end{pmatrix} \] \[ = \begin{pmatrix} 1 & -8 \\ 32 & 9 \end{pmatrix} \] Thus, \( f(A) = \begin{pmatrix} 1 & -8 \\ 32 & 9 \end{pmatrix} \).

To solve the given problem, we will break it down into two parts as stated in the question. ### Part (i) We need to show that \( A^2 - 4A + 5I = O \), where \( O \) is the null matrix of order \( 2 \times 2 \). 1. **Given Matrix A**: \[ A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-4A+5I=o . Hence Find A^(-1) .

If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:} , then f(A) is equal to

If f(x)=2^(3x-5) , find f^(-1)(16)

If f(x)=x^2-5x+ 7 and A=[(3,1),(-1,2)]. Find f(A)

If f(x)=7x^(4)-2x^(3)-8x-5 find f(-1)

If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

Find f ' (x) if f(x)=2x^3-5x^2-4x+3 ,

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

If f(x)=3x^4-5x^2+9, find f(x-1) .

If A=[(1 ,2 ),(2, 1)] and f(x)=x^2-2x-3 , show that f(A)=O .