Home
Class 12
MATHS
if A[{:(1,3,2),(2,0,3),(1,-1,1):}],then ...

`if A[{:(1,3,2),(2,0,3),(1,-1,1):}],`then find `A^(3)-2A^(2)+A-I_(3).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \( A^3 - 2A^2 + A - I_3 \) where \( A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \) and \( I_3 \) is the identity matrix of order 3. ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \] Calculating each element: - First row, first column: \( 1*1 + 3*2 + 2*1 = 1 + 6 + 2 = 9 \) - First row, second column: \( 1*3 + 3*0 + 2*(-1) = 3 + 0 - 2 = 1 \) - First row, third column: \( 1*2 + 3*3 + 2*1 = 2 + 9 + 2 = 13 \) - Second row, first column: \( 2*1 + 0*2 + 3*1 = 2 + 0 + 3 = 5 \) - Second row, second column: \( 2*3 + 0*0 + 3*(-1) = 6 + 0 - 3 = 3 \) - Second row, third column: \( 2*2 + 0*3 + 3*1 = 4 + 0 + 3 = 7 \) - Third row, first column: \( 1*1 + (-1)*2 + 1*1 = 1 - 2 + 1 = 0 \) - Third row, second column: \( 1*3 + (-1)*0 + 1*(-1) = 3 + 0 - 1 = 2 \) - Third row, third column: \( 1*2 + (-1)*3 + 1*1 = 2 - 3 + 1 = 0 \) Thus, \[ A^2 = \begin{pmatrix} 9 & 1 & 13 \\ 5 & 3 & 7 \\ 0 & 2 & 0 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Now, we compute \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 9 & 1 & 13 \\ 5 & 3 & 7 \\ 0 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \] Calculating each element: - First row, first column: \( 9*1 + 1*2 + 13*1 = 9 + 2 + 13 = 24 \) - First row, second column: \( 9*3 + 1*0 + 13*(-1) = 27 + 0 - 13 = 14 \) - First row, third column: \( 9*2 + 1*3 + 13*1 = 18 + 3 + 13 = 34 \) - Second row, first column: \( 5*1 + 3*2 + 7*1 = 5 + 6 + 7 = 18 \) - Second row, second column: \( 5*3 + 3*0 + 7*(-1) = 15 + 0 - 7 = 8 \) - Second row, third column: \( 5*2 + 3*3 + 7*1 = 10 + 9 + 7 = 26 \) - Third row, first column: \( 0*1 + 2*2 + 0*1 = 0 + 4 + 0 = 4 \) - Third row, second column: \( 0*3 + 2*0 + 0*(-1) = 0 + 0 + 0 = 0 \) - Third row, third column: \( 0*2 + 2*3 + 0*1 = 0 + 6 + 0 = 6 \) Thus, \[ A^3 = \begin{pmatrix} 24 & 14 & 34 \\ 18 & 8 & 26 \\ 4 & 0 & 6 \end{pmatrix} \] ### Step 3: Calculate \( 2A^2 \) Now, we calculate \( 2A^2 \): \[ 2A^2 = 2 \cdot \begin{pmatrix} 9 & 1 & 13 \\ 5 & 3 & 7 \\ 0 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 18 & 2 & 26 \\ 10 & 6 & 14 \\ 0 & 4 & 0 \end{pmatrix} \] ### Step 4: Calculate \( A - I_3 \) Next, we find \( A - I_3 \): \[ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ A - I_3 = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 3 & 2 \\ 2 & -1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] ### Step 5: Combine all results Now we can combine all the results to find \( A^3 - 2A^2 + A - I_3 \): \[ A^3 - 2A^2 + A - I_3 = \begin{pmatrix} 24 & 14 & 34 \\ 18 & 8 & 26 \\ 4 & 0 & 6 \end{pmatrix} - \begin{pmatrix} 18 & 2 & 26 \\ 10 & 6 & 14 \\ 0 & 4 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 3 & 2 \\ 2 & -1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] Calculating each element: - First row: \( (24 - 18 + 0), (14 - 2 + 3), (34 - 26 + 2) = (6, 15, 10) \) - Second row: \( (18 - 10 + 2), (8 - 6 - 1), (26 - 14 + 3) = (10, 1, 15) \) - Third row: \( (4 - 0 + 1), (0 - 4 - 1), (6 - 0 + 0) = (5, -5, 6) \) Thus, the final result is: \[ A^3 - 2A^2 + A - I_3 = \begin{pmatrix} 6 & 15 & 10 \\ 10 & 1 & 15 \\ 5 & -5 & 6 \end{pmatrix} \]

To solve the problem, we need to compute \( A^3 - 2A^2 + A - I_3 \) where \( A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \) and \( I_3 \) is the identity matrix of order 3. ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 1 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3d|3 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3a|20 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A= [(1,1,3),(5,2,6),(-2,-1,-3)] then find A^(14)+3A-2I

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=[{:(,4,2),(,1,1):}] , find (A-2I) (A-3I) .

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

If A^(-1)=|{:(1,3,3),(1,4,3),(1,3,4):}|" and B"=[{:(5,0,4),(2,3,2),(1,2,1):}]," then find"(AB)^(-1)

If A+I={:[(2,2,3),(3,-1,1),(4,2,2)]:} then show that A^(3)-23A-40I=0