Home
Class 12
MATHS
Find the inverse of the following matri...

Find the inverse of the following matrices ` [{:(3,-1),(-4,2):}](ii)[{:(2,-6),(1,-2):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the given matrices, we will follow the steps outlined in the video transcript. Let's denote the first matrix as \( A \) and the second matrix as \( B \). ### Part 1: Finding the Inverse of Matrix \( A \) Given: \[ A = \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix} \] **Step 1: Calculate the Determinant of \( A \)** The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated as: \[ \text{det}(A) = ad - bc \] For matrix \( A \): \[ \text{det}(A) = (3)(2) - (-1)(-4) = 6 - 4 = 2 \] **Step 2: Interchange the Diagonal Elements** Interchanging the diagonal elements of \( A \): \[ A' = \begin{pmatrix} 2 & -1 \\ -4 & 3 \end{pmatrix} \] **Step 3: Change the Sign of the Off-Diagonal Elements** Changing the signs of the off-diagonal elements: \[ A'' = \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \] **Step 4: Divide by the Determinant** Now, divide each element of \( A'' \) by the determinant: \[ A^{-1} = \frac{1}{\text{det}(A)} A'' = \frac{1}{2} \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{pmatrix} \] ### Part 2: Finding the Inverse of Matrix \( B \) Given: \[ B = \begin{pmatrix} 2 & -6 \\ 1 & -2 \end{pmatrix} \] **Step 1: Calculate the Determinant of \( B \)** For matrix \( B \): \[ \text{det}(B) = (2)(-2) - (-6)(1) = -4 + 6 = 2 \] **Step 2: Interchange the Diagonal Elements** Interchanging the diagonal elements of \( B \): \[ B' = \begin{pmatrix} -2 & -6 \\ 1 & 2 \end{pmatrix} \] **Step 3: Change the Sign of the Off-Diagonal Elements** Changing the signs of the off-diagonal elements: \[ B'' = \begin{pmatrix} -2 & 6 \\ -1 & 2 \end{pmatrix} \] **Step 4: Divide by the Determinant** Now, divide each element of \( B'' \) by the determinant: \[ B^{-1} = \frac{1}{\text{det}(B)} B'' = \frac{1}{2} \begin{pmatrix} -2 & 6 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ -\frac{1}{2} & 1 \end{pmatrix} \] ### Final Answers: The inverses of the matrices are: \[ A^{-1} = \begin{pmatrix} 1 & \frac{1}{2} \\ 2 & \frac{3}{2} \end{pmatrix} \] \[ B^{-1} = \begin{pmatrix} -1 & 3 \\ -\frac{1}{2} & 1 \end{pmatrix} \]

To find the inverse of the given matrices, we will follow the steps outlined in the video transcript. Let's denote the first matrix as \( A \) and the second matrix as \( B \). ### Part 1: Finding the Inverse of Matrix \( A \) Given: \[ A = \begin{pmatrix} 3 & -1 \\ -4 & 2 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3f|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

find the inverse of the following matrix : [{:(1,-1),(2,3):}]

Using elementary transformations find the inverse of the following matrices [{:( 2,-3,3),(2,2,3),(3,-2,2):}]

Find the inverse of the following matrices if exist : (i) |{:(5,-3),(2,2):}| (ii) |{:(1,-3),(-1,2):}| (iii) |{:(1,0,-1),(3,4,5),(0,-6,-7):}| (iv) |{:(1,-3,3),(2,2,-4),(2,0,2):}| (v) |{:(1,2,1),(1,-1,-2),(1,2,-1):}| (vi) |{:(4,-2,-1),(1,1,-1),(-1,2,4):}|

Using elementary transformations (operations), find the inverse of the following matrices, if it exists [(2,-1,3),(-5,3,1),(-3,2,3)]

Find inverse, by elementary row operations (if possible) , of both following matrices. (i) [{:(1,3),(-5,7):}] (ii) [{:(1,3),(-2,6):}]

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

Find the transpose of each of the following matrices:(i) [(5 , 1), (2 ,1) ] (ii) [(1 , -1), (2 ,3) ] (iii) [(-1 , 5, 6), (sqrt 3 ,5, 6), (2 , 3, -1)]

Find the inverse of the matrix A= [(3,1),(4,2)]

Find the inverse of the matrix |[2,-1], [3, 4]| .

Using elementary transformtions (operations), find the inverse of the following matrices, if it exists: [[3,9],[1,3]]