Home
Class 12
MATHS
if A=[{:(1,-1,1),(2,1,-1),(-1,-2,2):}] t...

`if A=[{:(1,-1,1),(2,1,-1),(-1,-2,2):}]` then show that `A^(-1)` Does not exist.

Text Solution

AI Generated Solution

The correct Answer is:
To show that the inverse of the matrix \( A \) does not exist, we need to calculate the determinant of the matrix \( A \) and check if it equals zero. If the determinant is zero, then the inverse does not exist. Given the matrix: \[ A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 \end{pmatrix} \] ### Step 1: Calculate the Determinant of Matrix A The determinant of a \( 3 \times 3 \) matrix can be calculated using the formula: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \( A \): - \( a = 1, b = -1, c = 1 \) - \( d = 2, e = 1, f = -1 \) - \( g = -1, h = -2, i = 2 \) Substituting these values into the determinant formula: \[ \text{det}(A) = 1 \cdot (1 \cdot 2 - (-1) \cdot (-2)) - (-1) \cdot (2 \cdot 2 - (-1) \cdot (-1)) + 1 \cdot (2 \cdot (-2) - 1 \cdot (-1)) \] ### Step 2: Simplify the Determinant Calculation Calculating each term: 1. \( ei - fh = 1 \cdot 2 - (-1)(-2) = 2 - 2 = 0 \) 2. \( di - fg = 2 \cdot 2 - (-1)(-1) = 4 - 1 = 3 \) 3. \( dh - eg = 2 \cdot (-2) - 1 \cdot (-1) = -4 + 1 = -3 \) Now substituting these results back into the determinant calculation: \[ \text{det}(A) = 1 \cdot 0 - (-1) \cdot 3 + 1 \cdot (-3) \] \[ = 0 + 3 - 3 = 0 \] ### Step 3: Conclusion Since the determinant of \( A \) is \( 0 \): \[ \text{det}(A) = 0 \] This implies that the inverse of matrix \( A \) does not exist. ### Final Statement Thus, we conclude that \( A^{-1} \) does not exist because the determinant of \( A \) is zero. ---

To show that the inverse of the matrix \( A \) does not exist, we need to calculate the determinant of the matrix \( A \) and check if it equals zero. If the determinant is zero, then the inverse does not exist. Given the matrix: \[ A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & -2 & 2 ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3f|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3c|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A=[{:(3,-1),(1,-3):}]" and B"=[{:(2,1),(-1,-2):}]," then show that" : (AB)^(-1)=B^(-1)A^(-1)

If A=[[1,-1, 1],[ 2,-1, 0],[ 1, 0, 0]] , show that A^(-1)=A^2 .

If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

Show that ("lim")_(x->0)1/x does not exist.

If A=[(-1,-2,-2 ),(2, 1,-2),( 2,-2 ,1)] , show that a d j\ A=3A^T .

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)