Home
Class 12
MATHS
if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=...

`if[{:(2,1),(3,2):}]A[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}],"then" A=?`

A

`[{:(0,1),(1,1):}]`

B

`[{:(1,1),(1,0):}]`

C

`[{:(1,0),(0,1):}]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \) given that: \[ B A C = I \] where \[ B = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} -3 & 2 \\ 5 & -3 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 1: Find the inverse of matrix \( B \) To find the inverse of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \), we use the formula: \[ \text{If } \text{det}(B) \neq 0, \quad B^{-1} = \frac{1}{\text{det}(B)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] **Calculate the determinant of \( B \):** \[ \text{det}(B) = (2)(2) - (3)(1) = 4 - 3 = 1 \] **Now, compute \( B^{-1} \):** \[ B^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \] ### Step 2: Find the inverse of matrix \( C \) **Calculate the determinant of \( C \):** \[ \text{det}(C) = (-3)(-3) - (5)(2) = 9 - 10 = -1 \] **Now, compute \( C^{-1} \):** \[ C^{-1} = \frac{1}{-1} \begin{pmatrix} -3 & -2 \\ -5 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} \] ### Step 3: Use the relationship \( A = B^{-1} C^{-1} \) Now we can find \( A \): \[ A = B^{-1} C^{-1} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} \] ### Step 4: Perform the matrix multiplication \[ A = \begin{pmatrix} (2)(3) + (-1)(5) & (2)(2) + (-1)(3) \\ (-3)(3) + (2)(5) & (-3)(2) + (2)(3) \end{pmatrix} \] Calculating each element: - First row, first column: \( 6 - 5 = 1 \) - First row, second column: \( 4 - 3 = 1 \) - Second row, first column: \( -9 + 10 = 1 \) - Second row, second column: \( -6 + 6 = 0 \) Thus, we have: \[ A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \] ### Final Answer \[ A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \]

To solve the problem, we need to find the matrix \( A \) given that: \[ B A C = I \] where ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find the matrix A satisfying the matrix equation [(2, 1),( 3, 2)]A[(-3, 2),( 5,-3)]=[(1, 0 ),(0, 1)] .

[{:(,x^(2)+x,-1),(,3,2):}]+[{:(,0,-1),(,-x+1,x):}]=[{:(,0,-2),(,5,1):}] then x is equalto-

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

If A=[{:(,1),(,2),(,3):}]and B =[{:(,-5,4,0),(,0,2,-1),(,1,-3,2):}]"then AB"

compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,a):}](ii) [{:(1),(2),(3):}][2" "3 " "4 ] (iii) [{:(1,-2),(2,3):}][{:(1,2,3),(2,3,1):}] (iv)[{:(2,3,4),(3,4,5),(4,5,6):}][{:(1,-3,5),(0,2,4),(3,0,5):}] (V) [{:(2,1),(3,2),(-1,1):}][{:(1,0,1),(-1,2,1):}] (vi) [{:(3,-1,3),(-1,0,2):}][{:(2,-3),(1,0),(3,1):}]

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

if A=[{:(1,2,3),(4,5,6):}]and B=[{:(-3,-2),(0,1),(-4,-5):}], then find AB and BA ,

Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Evaluate: (i) 3[(5),(-2)] (ii) 7 [{:(,-1,2),(,0,1):}] (iii) 2[{:(,-1, 0),(,2,-3):}] +[{:(,3,3),(,5,0):}]