Home
Class 12
MATHS
if A=[{:(0,1),(1,0):}],"then"A^(4)=?...

`if A=[{:(0,1),(1,0):}],"then"A^(4)=?`

A

`[{:(1,1),(0,0):}]`

B

`[{:(0,1),(0,1):}]`

C

`[{:(1,0),(0,1):}]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C

N/a
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.2|22 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3e|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

If A is a square matrix of any order then |A-x|=0 is called the chracteristic equation of matrix A and every square matrix satisfies its chatacteristic equation. For example if A=[(1,2),(1,5)], Then [(A-xI)], = [(1,2),(1,5)]-[(x,0),(0,x)]=[(1-x,2),(1-0,5-x)]=[(1-x,2),(1,5-x)] Characteristic equation of matrix A is |(1-x,2),(1,5-x)|=0 or (1-x)(5-x)(0-2)=0 or x^2-6x+3=0 Matrix A will satisfy this equation ie. A^2-6A+3I=0 . A^-1 can be determined by multiplying both sides of this equation. Let A=[(1,0,0),(0,1,1),(1,-2,4)] On the basis for above information answer the following questions:Sum of elements of A^-1 is (A) 2 (B) -2 (C) 6 (D) none of these

If A is a square matrix of any order then |A-x|=0 is called the characteristic equation of matrix A and every square matrix satisfies its characteristic equation. For example if A=[(1,2),(1,5)], Then [(A-xI)], = [(1,2),(1,5)]-[(x,0),(0,x)]=[(1-x,2),(1-0,5-u)]=[(1-x,2),(1,5-x)] Characteristic equation of matri A is |(1-x,2),(1,5-x)|=0 or (1-x)(5-x0-2=0 or x^2-6x+3=0 . Matrix A will satisfy this equation ie. A^2-6A+3I=0 then A^-1 can be determined by multiplying both sides of this equation let A=[(1,0,0),(0,1,1),(1,-2,4)] On the basis fo above information answer the following questions: If 6A^-1=A^2+aA+bI, then (a,b) is (A) (-6,11) (B) (-11,60 (C) (11,6) (D) (6,11)

If A=[(1,0),(0,1)] then A^4= (A) [(1,0),(0,1)] (B) [(1,1),(0,10)] (C) [(0,0),(1,1)] (D) [(0,1),(1,0)]

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

If A=[{:(,1,4),(,2,1):}], B=[{:(,-3,2),(,4,0):}] and C=[{:(,1,0),(,0,2):}] simplify : A^2+BC .

Evalute the determinants : A=|{:(1,0,1),(0,1,2),(0,0,4):}|

If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=