Home
Class 12
MATHS
Simplify: cos theta[{:(costheta,sinthe...

Simplify:
`cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \[ \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} + \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}, \] we will follow these steps: ### Step 1: Distribute \(\cos \theta\) and \(\sin \theta\) into their respective matrices. \[ \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos^2 \theta \end{pmatrix} \] \[ \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix} = \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} \] ### Step 2: Add the two resulting matrices. \[ \begin{pmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ -\cos \theta \sin \theta & \cos^2 \theta \end{pmatrix} + \begin{pmatrix} \sin^2 \theta & -\sin \theta \cos \theta \\ \sin \theta \cos \theta & \sin^2 \theta \end{pmatrix} \] Adding the corresponding elements gives: \[ \begin{pmatrix} \cos^2 \theta + \sin^2 \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ -\cos \theta \sin \theta + \sin \theta \cos \theta & \cos^2 \theta + \sin^2 \theta \end{pmatrix} \] ### Step 3: Simplify the elements. 1. The first element: \(\cos^2 \theta + \sin^2 \theta = 1\) (using the Pythagorean identity). 2. The second element: \(\cos \theta \sin \theta - \sin \theta \cos \theta = 0\). 3. The third element: \(-\cos \theta \sin \theta + \sin \theta \cos \theta = 0\). 4. The fourth element: \(\cos^2 \theta + \sin^2 \theta = 1\). Thus, we have: \[ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Final Result: The simplified expression is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

To simplify the expression \[ \cos \theta \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} + \sin \theta \begin{pmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{pmatrix}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

Simplify the following : cos theta [{:(costheta,-sintheta ),(sintheta,costheta ):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]

Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta.[{:(sintheta,-costheta),(costheta,sintheta):}]=I.

Simplify costheta[[costheta,sintheta],[sintheta,costheta]]+sintheta[[sintheta,-costheta],[costheta,sintheta]]

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

Simplify: costheta[costhetasintheta-sinthetacostheta]+sintheta[sintheta-costhetacosthetasintheta]

Evaluate Delta=|{:(sintheta, costheta),(-costheta,sintheta):}|

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3.2
  1. compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,...

    Text Solution

    |

  2. if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]a...

    Text Solution

    |

  3. If A=[[2/3, 1, 5/3],[ 1/3, 2/3, 4/3] ,[7/3, 2, 2/3]]and B=[[2/3, 3/5, ...

    Text Solution

    |

  4. Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+si...

    Text Solution

    |

  5. Find X and Y, if(i) X+Y=[7 0 2 5]and X-Y=[3 0 0 3](ii) 2X+3Y=[2 3 4 0]...

    Text Solution

    |

  6. Find X if Y=[3, 2, 1 ,4] and 2X+Y=[1, 0, -3, 2] .

    Text Solution

    |

  7. Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8...

    Text Solution

    |

  8. Solve the equation for x, y, z and t, if 2[x, z , y, t]+3[1, -1 , 0 ,...

    Text Solution

    |

  9. ifx[{:(2),(3):}]+y[{:(-1),(1):}]=[{:(10),(5):}],find the values of x ...

    Text Solution

    |

  10. Given 3[x y z w]-[x6-1 2w]+[4x+y z+w3] , find the values of x, y, z an...

    Text Solution

    |

  11. If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . ...

    Text Solution

    |

  12. Show that(i) [5-1 6 7][2 1 3 4]!=[2 1 3 4][5-1 6 7](ii) [1 2 3 0 1 0 1...

    Text Solution

    |

  13. If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)].

    Text Solution

    |

  14. if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  15. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  16. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  17. A trust fund has Rs. 30000 that must be invested in two different t...

    Text Solution

    |

  18. The bookshop of a particular school has 10 dozen chemistry books, 8...

    Text Solution

    |

  19. the restriction on n, k and p so that PY +Wywill be defined are :

    Text Solution

    |

  20. Assume X,Z are the matrices of order 2 xx n,2 xx p respectively. If n...

    Text Solution

    |