Home
Class 12
MATHS
Solve the equation for x, y, z and t, if...

Solve the equation for x, y, z and t, if `2[x, z , y, t]+3[1, -1 , 0 , 2]=3[3, 5, 4, 6]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2[x, z, y, t] + 3[1, -1, 0, 2] = 3[3, 5, 4, 6] \), we will follow these steps: ### Step 1: Write the equation in matrix form We start with the equation: \[ 2[x, z, y, t] + 3[1, -1, 0, 2] = 3[3, 5, 4, 6] \] ### Step 2: Multiply the matrices by their respective scalars Multiply the first matrix by 2: \[ 2[x, z, y, t] = [2x, 2z, 2y, 2t] \] Multiply the second matrix by 3: \[ 3[1, -1, 0, 2] = [3 \cdot 1, 3 \cdot -1, 3 \cdot 0, 3 \cdot 2] = [3, -3, 0, 6] \] Multiply the third matrix by 3: \[ 3[3, 5, 4, 6] = [3 \cdot 3, 3 \cdot 5, 3 \cdot 4, 3 \cdot 6] = [9, 15, 12, 18] \] ### Step 3: Substitute the results back into the equation Now we have: \[ [2x, 2z, 2y, 2t] + [3, -3, 0, 6] = [9, 15, 12, 18] \] ### Step 4: Combine the matrices Add the two matrices on the left: \[ [2x + 3, 2z - 3, 2y + 0, 2t + 6] = [9, 15, 12, 18] \] ### Step 5: Set up equations by comparing corresponding elements From the above equation, we can set up the following equations: 1. \( 2x + 3 = 9 \) 2. \( 2z - 3 = 15 \) 3. \( 2y = 12 \) 4. \( 2t + 6 = 18 \) ### Step 6: Solve each equation for \( x, y, z, t \) 1. **Solving for \( x \)**: \[ 2x + 3 = 9 \\ 2x = 9 - 3 \\ 2x = 6 \\ x = \frac{6}{2} = 3 \] 2. **Solving for \( z \)**: \[ 2z - 3 = 15 \\ 2z = 15 + 3 \\ 2z = 18 \\ z = \frac{18}{2} = 9 \] 3. **Solving for \( y \)**: \[ 2y = 12 \\ y = \frac{12}{2} = 6 \] 4. **Solving for \( t \)**: \[ 2t + 6 = 18 \\ 2t = 18 - 6 \\ 2t = 12 \\ t = \frac{12}{2} = 6 \] ### Step 7: Write the final solution The values of \( x, y, z, \) and \( t \) are: \[ x = 3, \quad y = 6, \quad z = 9, \quad t = 6 \] ### Summary of the solution: The final answer is: \[ (x, y, z, t) = (3, 6, 9, 6) \] ---

To solve the equation \( 2[x, z, y, t] + 3[1, -1, 0, 2] = 3[3, 5, 4, 6] \), we will follow these steps: ### Step 1: Write the equation in matrix form We start with the equation: \[ 2[x, z, y, t] + 3[1, -1, 0, 2] = 3[3, 5, 4, 6] \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find x ,\ y ,\ z ,\ t if 2[(x, z ),(y ,t)]+3[(1,-1),( 0, 2)]=3[(3, 5),( 4 ,6)] .

Find x ,\ y ,\ z\ a n d\ t , if 3[x y z t]=[x6-1 2t]+[4x+y z+t3]

Solve the following equations by matrix method. 2x + y + z = 1, x - 2y - 3z=1 and 3x + 2y +4z=5

Solve the following system of equations 3x - 4y + 5z = 0, x + y - 2z = 0, 2x + 3y + z = 0

If A = [(5, -1, 4), (2, 3, 5), (5, -2, 6)] , find A^(-1) and use it to solve the following system of equation 5x - y + 4z = 5, 2x + 3y +5z = 2, 5x - 2y + 6z =-1

Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1],[1, -2, -2],[2, 1, 3]] and use it to solve the system of equations x – y + z = 4, x – 2y – 2z = 9, 2x + y + 3z = 1

Determine the product [[-4, 4, 4], [-7, 1, 3],[5, -3, -1]][[1, -1, 1],[1, -2, -2],[2, 1, 3]] and use it to solve the system of equations x – y + z = 4, x – 2y – 2z = 9, 2x + y + 3z = 1

Solve system of linear equations, using matrix method, 2x + 3y +3z = 5 x-2 y + z =-4 , 3x-y - 2z= 3

Solve the system of equations 2x+3y-3z=0 , 3x-3y+z=0 and 3x-2y-3z=0

Examine the consistency of the system of equations 5x -y + 4z = 5," " 2x + 3y + 5z = 2," " 5x -2y + 6z = 1

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3.2
  1. compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,...

    Text Solution

    |

  2. if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]a...

    Text Solution

    |

  3. If A=[[2/3, 1, 5/3],[ 1/3, 2/3, 4/3] ,[7/3, 2, 2/3]]and B=[[2/3, 3/5, ...

    Text Solution

    |

  4. Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+si...

    Text Solution

    |

  5. Find X and Y, if(i) X+Y=[7 0 2 5]and X-Y=[3 0 0 3](ii) 2X+3Y=[2 3 4 0]...

    Text Solution

    |

  6. Find X if Y=[3, 2, 1 ,4] and 2X+Y=[1, 0, -3, 2] .

    Text Solution

    |

  7. Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8...

    Text Solution

    |

  8. Solve the equation for x, y, z and t, if 2[x, z , y, t]+3[1, -1 , 0 ,...

    Text Solution

    |

  9. ifx[{:(2),(3):}]+y[{:(-1),(1):}]=[{:(10),(5):}],find the values of x ...

    Text Solution

    |

  10. Given 3[x y z w]-[x6-1 2w]+[4x+y z+w3] , find the values of x, y, z an...

    Text Solution

    |

  11. If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . ...

    Text Solution

    |

  12. Show that(i) [5-1 6 7][2 1 3 4]!=[2 1 3 4][5-1 6 7](ii) [1 2 3 0 1 0 1...

    Text Solution

    |

  13. If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)].

    Text Solution

    |

  14. if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  15. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  16. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  17. A trust fund has Rs. 30000 that must be invested in two different t...

    Text Solution

    |

  18. The bookshop of a particular school has 10 dozen chemistry books, 8...

    Text Solution

    |

  19. the restriction on n, k and p so that PY +Wywill be defined are :

    Text Solution

    |

  20. Assume X,Z are the matrices of order 2 xx n,2 xx p respectively. If n...

    Text Solution

    |