Home
Class 12
MATHS
If f(x) = [(cos x , - sinx,0),(sinx,cosx...

If f(x) = `[(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)]` then show f(x) . f(y) = f(x+y)

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( f(x) \cdot f(y) = f(x+y) \) for the function defined as: \[ f(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] we will follow these steps: ### Step 1: Write down \( f(x) \) and \( f(y) \) We have: \[ f(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] \[ f(y) = \begin{pmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 2: Calculate \( f(x) \cdot f(y) \) Now, we will multiply the two matrices \( f(x) \) and \( f(y) \): \[ f(x) \cdot f(y) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 3: Perform the matrix multiplication Calculating the elements of the resulting matrix: 1. First row, first column: \[ \cos x \cdot \cos y + (-\sin x) \cdot \sin y + 0 \cdot 0 = \cos x \cos y - \sin x \sin y \] 2. First row, second column: \[ \cos x \cdot (-\sin y) + (-\sin x) \cdot \cos y + 0 \cdot 0 = -\cos x \sin y - \sin x \cos y \] 3. First row, third column: \[ \cos x \cdot 0 + (-\sin x) \cdot 0 + 0 \cdot 1 = 0 \] 4. Second row, first column: \[ \sin x \cdot \cos y + \cos x \cdot \sin y + 0 \cdot 0 = \sin x \cos y + \cos x \sin y \] 5. Second row, second column: \[ \sin x \cdot (-\sin y) + \cos x \cdot \cos y + 0 \cdot 0 = -\sin x \sin y + \cos x \cos y \] 6. Second row, third column: \[ \sin x \cdot 0 + \cos x \cdot 0 + 0 \cdot 1 = 0 \] 7. Third row, first column: \[ 0 \cdot \cos y + 0 \cdot \sin y + 1 \cdot 0 = 0 \] 8. Third row, second column: \[ 0 \cdot (-\sin y) + 0 \cdot \cos y + 1 \cdot 0 = 0 \] 9. Third row, third column: \[ 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 1 = 1 \] Thus, we have: \[ f(x) \cdot f(y) = \begin{pmatrix} \cos x \cos y - \sin x \sin y & -(\cos x \sin y + \sin x \cos y) & 0 \\ \sin x \cos y + \cos x \sin y & \cos x \cos y - \sin x \sin y & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 4: Recognize the formulas Using the trigonometric identities: - \( \cos(x+y) = \cos x \cos y - \sin x \sin y \) - \( \sin(x+y) = \sin x \cos y + \cos x \sin y \) We can rewrite the resulting matrix as: \[ f(x) \cdot f(y) = \begin{pmatrix} \cos(x+y) & -\sin(x+y) & 0 \\ \sin(x+y) & \cos(x+y) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 5: Write down \( f(x+y) \) Now, we compute \( f(x+y) \): \[ f(x+y) = \begin{pmatrix} \cos(x+y) & -\sin(x+y) & 0 \\ \sin(x+y) & \cos(x+y) & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 6: Conclusion Since we have shown that: \[ f(x) \cdot f(y) = f(x+y) \] Thus, we conclude that \( f(x) \cdot f(y) = f(x+y) \).

To show that \( f(x) \cdot f(y) = f(x+y) \) for the function defined as: \[ f(x) = \begin{pmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{pmatrix} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[ 0, 0, 1]] , show that F(x) F(y) = F(x + y) .

If F(x)=[("cos"x,-sin x,0),(sin x,cos x,0),(0,0,1)] and G(y)=[(cos y,0,sin y),(0,1,0),(-sin y,0,cos y)] , then [F(x) G(y)]^(-1) is equal to

Given that F(x)=[{:(,cos x,-sin x,0),(,sin x,cos x,0),(,0,0,1):}]."If"in R Then for what values of y, F(x+y)=F(x)F(y)

Let F(x)= [cosx -sinx 0 sinx cosx 0 0 0 1] . Show that F(x)\ F(y)=F(x+y)

If f(x) =|{:(sinx,cosx,sinx),(cosx,-sinx,cosx),(x,1,1):}| find the value of 2[f'(0)]+[f'(1)]^(2)

If f(x)=|(0,x^2-sinx,cosx-2),(sinx-x^2,0,1-2x),(2-cosx,2x-1,0)|, then int f(x) dx is equal to

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

If f(x)=(2x+3sinx)/(3x+2sinx) , x!=0 is continuous at x=0 , then find f(0)

If f(x)=(2x+3sinx)/(3x+2sinx),x!=0 is continuous at x=0 , then find f(0)dot

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3.2
  1. compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,...

    Text Solution

    |

  2. if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]a...

    Text Solution

    |

  3. If A=[[2/3, 1, 5/3],[ 1/3, 2/3, 4/3] ,[7/3, 2, 2/3]]and B=[[2/3, 3/5, ...

    Text Solution

    |

  4. Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+si...

    Text Solution

    |

  5. Find X and Y, if(i) X+Y=[7 0 2 5]and X-Y=[3 0 0 3](ii) 2X+3Y=[2 3 4 0]...

    Text Solution

    |

  6. Find X if Y=[3, 2, 1 ,4] and 2X+Y=[1, 0, -3, 2] .

    Text Solution

    |

  7. Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8...

    Text Solution

    |

  8. Solve the equation for x, y, z and t, if 2[x, z , y, t]+3[1, -1 , 0 ,...

    Text Solution

    |

  9. ifx[{:(2),(3):}]+y[{:(-1),(1):}]=[{:(10),(5):}],find the values of x ...

    Text Solution

    |

  10. Given 3[x y z w]-[x6-1 2w]+[4x+y z+w3] , find the values of x, y, z an...

    Text Solution

    |

  11. If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . ...

    Text Solution

    |

  12. Show that(i) [5-1 6 7][2 1 3 4]!=[2 1 3 4][5-1 6 7](ii) [1 2 3 0 1 0 1...

    Text Solution

    |

  13. If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)].

    Text Solution

    |

  14. if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  15. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  16. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  17. A trust fund has Rs. 30000 that must be invested in two different t...

    Text Solution

    |

  18. The bookshop of a particular school has 10 dozen chemistry books, 8...

    Text Solution

    |

  19. the restriction on n, k and p so that PY +Wywill be defined are :

    Text Solution

    |

  20. Assume X,Z are the matrices of order 2 xx n,2 xx p respectively. If n...

    Text Solution

    |