Home
Class 12
MATHS
If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1...

If `f(x)=x^2-5x+6.` Find `f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)]`.

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(A) \) where \( f(x) = x^2 - 5x + 6 \) and \( A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) We need to compute the square of matrix \( A \). \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row: - \( (2 \cdot 2 + 0 \cdot 2 + 1 \cdot 1) = 4 + 0 + 1 = 5 \) - \( (2 \cdot 0 + 0 \cdot 1 + 1 \cdot -1) = 0 + 0 - 1 = -1 \) - \( (2 \cdot 1 + 0 \cdot 3 + 1 \cdot 0) = 2 + 0 + 0 = 2 \) - Second row: - \( (2 \cdot 2 + 1 \cdot 2 + 3 \cdot 1) = 4 + 2 + 3 = 9 \) - \( (2 \cdot 0 + 1 \cdot 1 + 3 \cdot -1) = 0 + 1 - 3 = -2 \) - \( (2 \cdot 1 + 1 \cdot 3 + 3 \cdot 0) = 2 + 3 + 0 = 5 \) - Third row: - \( (1 \cdot 2 + -1 \cdot 2 + 0 \cdot 1) = 2 - 2 + 0 = 0 \) - \( (1 \cdot 0 + -1 \cdot 1 + 0 \cdot -1) = 0 - 1 + 0 = -1 \) - \( (1 \cdot 1 + -1 \cdot 3 + 0 \cdot 0) = 1 - 3 + 0 = -2 \) Thus, \[ A^2 = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} \] ### Step 2: Calculate \( -5A \) Now we compute \( -5A \): \[ -5A = -5 \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} -10 & 0 & -5 \\ -10 & -5 & -15 \\ -5 & 5 & 0 \end{pmatrix} \] ### Step 3: Calculate \( 6I \) Next, we compute \( 6I \), where \( I \) is the identity matrix of size 3: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Thus, \[ 6I = 6 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \] ### Step 4: Combine to find \( f(A) \) Now we can find \( f(A) \) using the formula: \[ f(A) = A^2 - 5A + 6I \] Calculating \( f(A) \): \[ f(A) = \begin{pmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{pmatrix} + \begin{pmatrix} -10 & 0 & -5 \\ -10 & -5 & -15 \\ -5 & 5 & 0 \end{pmatrix} + \begin{pmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} \] Now we add the matrices element-wise: - First row: - \( 5 - 10 + 6 = 1 \) - \( -1 + 0 + 0 = -1 \) - \( 2 - 5 + 0 = -3 \) - Second row: - \( 9 - 10 + 0 = -1 \) - \( -2 - 5 + 6 = -1 \) - \( 5 - 15 + 0 = -10 \) - Third row: - \( 0 - 5 + 0 = -5 \) - \( -1 + 5 + 0 = 4 \) - \( -2 + 0 + 6 = 4 \) Thus, \[ f(A) = \begin{pmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{pmatrix} \] ### Final Result The final result is: \[ f(A) = \begin{pmatrix} 1 & -1 & -3 \\ -1 & -1 & -10 \\ -5 & 4 & 4 \end{pmatrix} \]

To find \( f(A) \) where \( f(x) = x^2 - 5x + 6 \) and \( A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate \( A^2 \) We need to compute the square of matrix \( A \). \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^2-5x+6 then find f(A) when A=[[2,0,1] , [2,1,3] , [1, -1, 0]]

If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-1 ,0)] .

If f(x)=x^2-2x , find f(A), where A=[(0, 1, 2),( 4 ,5, 0 ),(0, 2 ,3)] .

If f(x)=x^2-5x+ 7 and A=[(3,1),(-1,2)]. Find f(A)

A function f(x) is defined as f(x)=x^2+3 . Find f(0), F(1), f(x^2), f(x+1) and f(f(1)) .

Let f : R rarr given by f(x) = 3x^(2) + 5x + 1 . Find f(0), f(1), f(2).

A function f is defined by f(x) = x^(2) + 1 . Find f(0), f(5), f(10).

If a function f: R->R be defined by f(x)={3x-2,\ x 0 Find: f(1) ,\ f(-1),\ f(0),\ f(2)dot

If f(x)={{:(1+x",",-1lexlt0),(x^(2)-1",",0ltxlt2),(2x",",2lex):} Find f(3),f(-2),f(0),f((1)/(2))f(2-h),f(-1+h) , where hgt0 is very small.

If f(x) is defined as f(x)={{:(x,0lexlt(1)/(2)),(0,x=(1)/(2)),(1-x,(1)/(2)ltxle1):} then evaluate : lim_(xrarr(1)/(2)) f(x)

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3.2
  1. compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,...

    Text Solution

    |

  2. if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]a...

    Text Solution

    |

  3. If A=[[2/3, 1, 5/3],[ 1/3, 2/3, 4/3] ,[7/3, 2, 2/3]]and B=[[2/3, 3/5, ...

    Text Solution

    |

  4. Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+si...

    Text Solution

    |

  5. Find X and Y, if(i) X+Y=[7 0 2 5]and X-Y=[3 0 0 3](ii) 2X+3Y=[2 3 4 0]...

    Text Solution

    |

  6. Find X if Y=[3, 2, 1 ,4] and 2X+Y=[1, 0, -3, 2] .

    Text Solution

    |

  7. Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8...

    Text Solution

    |

  8. Solve the equation for x, y, z and t, if 2[x, z , y, t]+3[1, -1 , 0 ,...

    Text Solution

    |

  9. ifx[{:(2),(3):}]+y[{:(-1),(1):}]=[{:(10),(5):}],find the values of x ...

    Text Solution

    |

  10. Given 3[x y z w]-[x6-1 2w]+[4x+y z+w3] , find the values of x, y, z an...

    Text Solution

    |

  11. If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . ...

    Text Solution

    |

  12. Show that(i) [5-1 6 7][2 1 3 4]!=[2 1 3 4][5-1 6 7](ii) [1 2 3 0 1 0 1...

    Text Solution

    |

  13. If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)].

    Text Solution

    |

  14. if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  15. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  16. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  17. A trust fund has Rs. 30000 that must be invested in two different t...

    Text Solution

    |

  18. The bookshop of a particular school has 10 dozen chemistry books, 8...

    Text Solution

    |

  19. the restriction on n, k and p so that PY +Wywill be defined are :

    Text Solution

    |

  20. Assume X,Z are the matrices of order 2 xx n,2 xx p respectively. If n...

    Text Solution

    |