Home
Class 12
MATHS
if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , pr...

`if A =[{:(1,0,2),(0,2,1),(2,0,3):}] ,` prove that `A^3-6A^2+7A+2I=0`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( A^3 - 6A^2 + 7A + 2I = 0 \) for the matrix \[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}, \] we will follow these steps: ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}. \] Calculating this product: - First row: - \( 1 \cdot 1 + 0 \cdot 0 + 2 \cdot 2 = 1 + 0 + 4 = 5 \) - \( 1 \cdot 0 + 0 \cdot 2 + 2 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 1 \cdot 2 + 0 \cdot 1 + 2 \cdot 3 = 2 + 0 + 6 = 8 \) - Second row: - \( 0 \cdot 1 + 2 \cdot 0 + 1 \cdot 2 = 0 + 0 + 2 = 2 \) - \( 0 \cdot 0 + 2 \cdot 2 + 1 \cdot 0 = 0 + 4 + 0 = 4 \) - \( 0 \cdot 2 + 2 \cdot 1 + 1 \cdot 3 = 0 + 2 + 3 = 5 \) - Third row: - \( 2 \cdot 1 + 0 \cdot 0 + 3 \cdot 2 = 2 + 0 + 6 = 8 \) - \( 2 \cdot 0 + 0 \cdot 2 + 3 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 2 \cdot 2 + 0 \cdot 1 + 3 \cdot 3 = 4 + 0 + 9 = 13 \) Thus, \[ A^2 = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix}. \] ### Step 2: Calculate \( A^3 \) Now, we calculate \( A^3 = A^2 \cdot A \): \[ A^3 = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}. \] Calculating this product: - First row: - \( 5 \cdot 1 + 0 \cdot 0 + 8 \cdot 2 = 5 + 0 + 16 = 21 \) - \( 5 \cdot 0 + 0 \cdot 2 + 8 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 5 \cdot 2 + 0 \cdot 1 + 8 \cdot 3 = 10 + 0 + 24 = 34 \) - Second row: - \( 2 \cdot 1 + 4 \cdot 0 + 5 \cdot 2 = 2 + 0 + 10 = 12 \) - \( 2 \cdot 0 + 4 \cdot 2 + 5 \cdot 0 = 0 + 8 + 0 = 8 \) - \( 2 \cdot 2 + 4 \cdot 1 + 5 \cdot 3 = 4 + 4 + 15 = 23 \) - Third row: - \( 8 \cdot 1 + 0 \cdot 0 + 13 \cdot 2 = 8 + 0 + 26 = 34 \) - \( 8 \cdot 0 + 0 \cdot 2 + 13 \cdot 0 = 0 + 0 + 0 = 0 \) - \( 8 \cdot 2 + 0 \cdot 1 + 13 \cdot 3 = 16 + 0 + 39 = 55 \) Thus, \[ A^3 = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix}. \] ### Step 3: Calculate \( 6A^2 \) Now, we calculate \( 6A^2 \): \[ 6A^2 = 6 \cdot \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} = \begin{pmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{pmatrix}. \] ### Step 4: Calculate \( 7A \) Next, we calculate \( 7A \): \[ 7A = 7 \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix}. \] ### Step 5: Calculate \( 2I \) The identity matrix \( I \) of order 3 is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \] Thus, \[ 2I = 2 \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \] ### Step 6: Combine all results Now, we substitute these results into the equation \( A^3 - 6A^2 + 7A + 2I \): \[ A^3 - 6A^2 + 7A + 2I = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} - \begin{pmatrix} 30 & 0 & 48 \\ 12 & 24 & 30 \\ 48 & 0 & 78 \end{pmatrix} + \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} + \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}. \] Calculating this step by step: - First row: - \( 21 - 30 + 7 + 2 = 0 \) - \( 0 - 0 + 0 + 0 = 0 \) - \( 34 - 48 + 14 + 0 = 0 \) - Second row: - \( 12 - 12 + 0 + 0 = 0 \) - \( 8 - 24 + 14 + 2 = 0 \) - \( 23 - 30 + 7 + 0 = 0 \) - Third row: - \( 34 - 48 + 14 + 0 = 0 \) - \( 0 - 0 + 0 + 0 = 0 \) - \( 55 - 78 + 21 + 2 = 0 \) Thus, we have: \[ A^3 - 6A^2 + 7A + 2I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0. \] ### Conclusion Therefore, we have proved that \[ A^3 - 6A^2 + 7A + 2I = 0. \]

To prove that \( A^3 - 6A^2 + 7A + 2I = 0 \) for the matrix \[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}, ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A= [{:(,1,0,2),(,0,2,1),(,2,0,3):}] is a root of polynomial x^(3)-6x^(2)+7x+k=0 then the value of k is

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A=[{:(1,0,-1),(2,1,3),(0,1, 1):}] then verify that A^(2)+A=A(A+I) , where I is 3xx3 unit matrix.

If A=[(3, 2, 0),( 1, 4 ,0 ),(0 ,0 ,5)] , show that A^2-7A+10 I=O .

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3.2
  1. compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,...

    Text Solution

    |

  2. if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]a...

    Text Solution

    |

  3. If A=[[2/3, 1, 5/3],[ 1/3, 2/3, 4/3] ,[7/3, 2, 2/3]]and B=[[2/3, 3/5, ...

    Text Solution

    |

  4. Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+si...

    Text Solution

    |

  5. Find X and Y, if(i) X+Y=[7 0 2 5]and X-Y=[3 0 0 3](ii) 2X+3Y=[2 3 4 0]...

    Text Solution

    |

  6. Find X if Y=[3, 2, 1 ,4] and 2X+Y=[1, 0, -3, 2] .

    Text Solution

    |

  7. Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8...

    Text Solution

    |

  8. Solve the equation for x, y, z and t, if 2[x, z , y, t]+3[1, -1 , 0 ,...

    Text Solution

    |

  9. ifx[{:(2),(3):}]+y[{:(-1),(1):}]=[{:(10),(5):}],find the values of x ...

    Text Solution

    |

  10. Given 3[x y z w]-[x6-1 2w]+[4x+y z+w3] , find the values of x, y, z an...

    Text Solution

    |

  11. If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . ...

    Text Solution

    |

  12. Show that(i) [5-1 6 7][2 1 3 4]!=[2 1 3 4][5-1 6 7](ii) [1 2 3 0 1 0 1...

    Text Solution

    |

  13. If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)].

    Text Solution

    |

  14. if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  15. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  16. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  17. A trust fund has Rs. 30000 that must be invested in two different t...

    Text Solution

    |

  18. The bookshop of a particular school has 10 dozen chemistry books, 8...

    Text Solution

    |

  19. the restriction on n, k and p so that PY +Wywill be defined are :

    Text Solution

    |

  20. Assume X,Z are the matrices of order 2 xx n,2 xx p respectively. If n...

    Text Solution

    |