Home
Class 12
MATHS
If A A=[3-2 4-2]and I=[1 0 0 1], find k ...

If A `A=[3-2 4-2]`and `I=[1 0 0 1]`, find k so that `A^2=k A-2I`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) such that \( A^2 = kA - 2I \), given the matrices: \[ A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} \] Calculating the elements: - First row, first column: \[ 3 \cdot 3 + (-2) \cdot 4 = 9 - 8 = 1 \] - First row, second column: \[ 3 \cdot (-2) + (-2) \cdot (-2) = -6 + 4 = -2 \] - Second row, first column: \[ 4 \cdot 3 + (-2) \cdot 4 = 12 - 8 = 4 \] - Second row, second column: \[ 4 \cdot (-2) + (-2) \cdot (-2) = -8 + 4 = -4 \] Thus, we have: \[ A^2 = \begin{pmatrix} 1 & -2 \\ 4 & -4 \end{pmatrix} \] ### Step 2: Write the equation \( A^2 = kA - 2I \) We substitute \( A \) and \( I \) into the equation: \[ A^2 = kA - 2I \] Substituting the matrices: \[ \begin{pmatrix} 1 & -2 \\ 4 & -4 \end{pmatrix} = k \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Calculating \( -2I \): \[ -2I = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \] Now, we have: \[ \begin{pmatrix} 1 & -2 \\ 4 & -4 \end{pmatrix} = \begin{pmatrix} 3k - 2 & -2k \\ 4k & -2k - 2 \end{pmatrix} \] ### Step 3: Set up equations by equating corresponding elements We can equate the corresponding elements of the matrices: 1. From the first row, first column: \[ 1 = 3k - 2 \quad \text{(1)} \] 2. From the first row, second column: \[ -2 = -2k \quad \text{(2)} \] 3. From the second row, first column: \[ 4 = 4k \quad \text{(3)} \] 4. From the second row, second column: \[ -4 = -2k - 2 \quad \text{(4)} \] ### Step 4: Solve the equations **From equation (2):** \[ -2 = -2k \implies k = 1 \] **From equation (3):** \[ 4 = 4k \implies k = 1 \] **From equation (1):** \[ 1 = 3k - 2 \implies 3k = 3 \implies k = 1 \] **From equation (4):** \[ -4 = -2k - 2 \implies -2 = -2k \implies k = 1 \] ### Conclusion In all cases, we find that: \[ k = 1 \] ### Final Answer The value of \( k \) is \( 1 \). ---

To solve the problem, we need to find the value of \( k \) such that \( A^2 = kA - 2I \), given the matrices: \[ A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix}, \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A= [[1 , 0],[ − 1, 7]] and I=[[1, 0],[ 0 ,1]] , then find k so that A^2=8A+k I

If A=[(3,-2) ,(4,-2)] , find k such that A^2-k A-2I^2 =O .

If A=[[3 ,1],[-1 ,2]] and I=[[1, 0],[ 0, 1]] , then find lambda so that A^2=5A+lambdaI

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

If A=[(1, 0),(-1 ,7)] , find k such that A^2-8A+k I=O .

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If A=[[2,4],[-1,k]] and A^2=0 then find k

If A=[[2,-1],[ 3, 2]] and B=[[0, 4],[-1, 7]] , find 3A^2-2B+I .

If A=[[2,4],[-1,k]] and A^2=0 , rhen find the value of k

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3.2
  1. compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,...

    Text Solution

    |

  2. if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]a...

    Text Solution

    |

  3. If A=[[2/3, 1, 5/3],[ 1/3, 2/3, 4/3] ,[7/3, 2, 2/3]]and B=[[2/3, 3/5, ...

    Text Solution

    |

  4. Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+si...

    Text Solution

    |

  5. Find X and Y, if(i) X+Y=[7 0 2 5]and X-Y=[3 0 0 3](ii) 2X+3Y=[2 3 4 0]...

    Text Solution

    |

  6. Find X if Y=[3, 2, 1 ,4] and 2X+Y=[1, 0, -3, 2] .

    Text Solution

    |

  7. Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8...

    Text Solution

    |

  8. Solve the equation for x, y, z and t, if 2[x, z , y, t]+3[1, -1 , 0 ,...

    Text Solution

    |

  9. ifx[{:(2),(3):}]+y[{:(-1),(1):}]=[{:(10),(5):}],find the values of x ...

    Text Solution

    |

  10. Given 3[x y z w]-[x6-1 2w]+[4x+y z+w3] , find the values of x, y, z an...

    Text Solution

    |

  11. If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . ...

    Text Solution

    |

  12. Show that(i) [5-1 6 7][2 1 3 4]!=[2 1 3 4][5-1 6 7](ii) [1 2 3 0 1 0 1...

    Text Solution

    |

  13. If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)].

    Text Solution

    |

  14. if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  15. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  16. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  17. A trust fund has Rs. 30000 that must be invested in two different t...

    Text Solution

    |

  18. The bookshop of a particular school has 10 dozen chemistry books, 8...

    Text Solution

    |

  19. the restriction on n, k and p so that PY +Wywill be defined are :

    Text Solution

    |

  20. Assume X,Z are the matrices of order 2 xx n,2 xx p respectively. If n...

    Text Solution

    |