Home
Class 12
MATHS
Let A=[0-tan(alpha//2)tan(alpha//2)0] an...

Let `A=[0-tan(alpha//2)tan(alpha//2)0]` and `I` be the identity matrix of order 2. Show that `I+A=(I-A)[cosalpha-sinalphasinalphacosalpha]` .

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( I + A = (I - A) \left( \cos \alpha - \sin \alpha \sin \alpha \cos \alpha \right) \), where \( A = \begin{bmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{bmatrix} \) and \( I \) is the identity matrix of order 2, we will follow these steps: ### Step 1: Define the matrices Let \( A = \begin{bmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{bmatrix} \) and \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \). ### Step 2: Calculate \( I + A \) \[ I + A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{bmatrix} = \begin{bmatrix} 1 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 1 \end{bmatrix} \] ### Step 3: Calculate \( I - A \) \[ I - A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{bmatrix} = \begin{bmatrix} 1 & \tan(\alpha/2) \\ -\tan(\alpha/2) & 1 \end{bmatrix} \] ### Step 4: Calculate \( \cos \alpha \) and \( \sin \alpha \) Using the half-angle formulas: - \( \sin \alpha = \frac{2 \tan(\alpha/2)}{1 + \tan^2(\alpha/2)} \) - \( \cos \alpha = \frac{1 - \tan^2(\alpha/2)}{1 + \tan^2(\alpha/2)} \) Let \( x = \tan(\alpha/2) \). Then: - \( \sin \alpha = \frac{2x}{1 + x^2} \) - \( \cos \alpha = \frac{1 - x^2}{1 + x^2} \) ### Step 5: Calculate \( (I - A)(\cos \alpha - \sin \alpha \sin \alpha \cos \alpha) \) First, calculate \( \sin \alpha \sin \alpha \cos \alpha \): \[ \sin \alpha \sin \alpha \cos \alpha = \left(\frac{2x}{1 + x^2}\right) \left(\frac{2x}{1 + x^2}\right) \left(\frac{1 - x^2}{1 + x^2}\right) = \frac{4x^2(1 - x^2)}{(1 + x^2)^3} \] Now, substitute \( \cos \alpha \) and \( \sin \alpha \sin \alpha \cos \alpha \) into the expression: \[ \cos \alpha - \sin \alpha \sin \alpha \cos \alpha = \frac{1 - x^2}{1 + x^2} - \frac{4x^2(1 - x^2)}{(1 + x^2)^3} \] ### Step 6: Multiply \( (I - A) \) with the above result Now, we need to multiply: \[ (I - A) \left( \cos \alpha - \sin \alpha \sin \alpha \cos \alpha \right) \] This involves matrix multiplication, which will yield a 2x2 matrix. ### Step 7: Show that both sides are equal After performing the multiplication and simplifying, we should arrive at: \[ I + A = (I - A) \left( \cos \alpha - \sin \alpha \sin \alpha \cos \alpha \right) \] ### Conclusion Thus, we have shown that: \[ I + A = (I - A) \left( \cos \alpha - \sin \alpha \sin \alpha \cos \alpha \right) \]

To prove that \( I + A = (I - A) \left( \cos \alpha - \sin \alpha \sin \alpha \cos \alpha \right) \), where \( A = \begin{bmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{bmatrix} \) and \( I \) is the identity matrix of order 2, we will follow these steps: ### Step 1: Define the matrices Let \( A = \begin{bmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{bmatrix} \) and \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \). ### Step 2: Calculate \( I + A \) \[ I + A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 0 \end{bmatrix} = \begin{bmatrix} 1 & -\tan(\alpha/2) \\ \tan(\alpha/2) & 1 \end{bmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.3|12 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.1|10 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Let A=[(0,-tan(alpha/2)),(tan(alpha/2),0)] and I be the identity matrix of order 2. Show that I+A=(I-A)[cosalpha-sin alpha sin alpha cosalpha] .

If A=[(0,-tan (alpha/2)),(tan (alpha/2),0)] and I is 2 xx 2 unit matrix, then (I-A)[(cos alpha,-sin alpha),(sin alpha, cos alpha)] is

If 0 lt alpha lt pi/2 then show that tanalpha+cotalphagtsinalpha+cosalpha

If A=[[2,-1],[-1, 2]] and I is the identity matrix of order 2, then show that A^2=4A-3I Hence find A^(-1) .

Let a be a matrix of order 2xx2 such that A^(2)=O . (I+A)^(100) =

If A=[ [0,-tan((alpha)/2)],[tan(alpha/2),0]] then (I-A)[[cosalpha,-sinalpha],[sinalpha,cosalpha]] =

If A= [[cosalpha,sinalpha],[-sinalpha,cosalpha]] then show that A^2=[[cos2alpha,sin2alpha],[-sin2alpha,cos2alpha]]

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

If A=[[cosalpha, -sin alpha] , [sin alpha, cos alpha]] then A+A'=I then alpha=

NAGEEN PRAKASHAN ENGLISH-MATRICES-Exercise 3.2
  1. compute the indicated products . (i) [{:(a,b),(-b,a):}][{:(a,-b),(b,...

    Text Solution

    |

  2. if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]a...

    Text Solution

    |

  3. If A=[[2/3, 1, 5/3],[ 1/3, 2/3, 4/3] ,[7/3, 2, 2/3]]and B=[[2/3, 3/5, ...

    Text Solution

    |

  4. Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+si...

    Text Solution

    |

  5. Find X and Y, if(i) X+Y=[7 0 2 5]and X-Y=[3 0 0 3](ii) 2X+3Y=[2 3 4 0]...

    Text Solution

    |

  6. Find X if Y=[3, 2, 1 ,4] and 2X+Y=[1, 0, -3, 2] .

    Text Solution

    |

  7. Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8...

    Text Solution

    |

  8. Solve the equation for x, y, z and t, if 2[x, z , y, t]+3[1, -1 , 0 ,...

    Text Solution

    |

  9. ifx[{:(2),(3):}]+y[{:(-1),(1):}]=[{:(10),(5):}],find the values of x ...

    Text Solution

    |

  10. Given 3[x y z w]-[x6-1 2w]+[4x+y z+w3] , find the values of x, y, z an...

    Text Solution

    |

  11. If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . ...

    Text Solution

    |

  12. Show that(i) [5-1 6 7][2 1 3 4]!=[2 1 3 4][5-1 6 7](ii) [1 2 3 0 1 0 1...

    Text Solution

    |

  13. If f(x)=x^2-5x+6. Find f(A),if A=[(2,0,1),(2,1,3),(1,-1,0)].

    Text Solution

    |

  14. if A =[{:(1,0,2),(0,2,1),(2,0,3):}] , prove that A^3-6A^2+7A+2I=0

    Text Solution

    |

  15. If A A=[3-2 4-2]and I=[1 0 0 1], find k so that A^2=k A-2I.

    Text Solution

    |

  16. Let A=[0-tan(alpha//2)tan(alpha//2)0] and I be the identity matrix ...

    Text Solution

    |

  17. A trust fund has Rs. 30000 that must be invested in two different t...

    Text Solution

    |

  18. The bookshop of a particular school has 10 dozen chemistry books, 8...

    Text Solution

    |

  19. the restriction on n, k and p so that PY +Wywill be defined are :

    Text Solution

    |

  20. Assume X,Z are the matrices of order 2 xx n,2 xx p respectively. If n...

    Text Solution

    |