Home
Class 12
MATHS
If A=[1 1 1 1 1 1 1 1 1] , then prove th...

If `A=[1 1 1 1 1 1 1 1 1]` , then prove that `A^n=[3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)]` for every positive integer `ndot`

Text Solution

Verified by Experts

The correct Answer is:
N/a

`A^(n) =[{:(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1) ,3^(n-1)):}]`
for ` n=1`
` a=[{:(3^(0),3^(0),3^(0)),(3^(0),3^(0),3^(0)),(3^(0),3^(0),3^(0)):}]=[{:(1,1,1),(1,1,1),(1,1,1):}]`
which is true ,
`therefore A^(n)` is true for n=1,
Let `A^(n)` be true for n=K
`therefore A^(k)=[{:(3^(k-1),3^(k-1),3^(k-1)),(3^(k-1),3^(k-1)),3^(k-1)),(3^(k-1),3^(k-1) ,3^(k-1)):}].. .(1)`
for n-K+1,
`A^(k+1) =A^k) .A`
`=[{:( 3^(k-1).3^(k-1),3^(k-1)),(3^(k-1),3^(k-1),3^(k-1)),(3^(k-1),3^(k-1),3^(k-1)):}][{:(1,1,1),(1,1,1),(1,1,1):}]`
`=[{:(3^(k-1)+3^(k-1)+3^(k-1),3^(k-1)+3^(k-1)+3^(k-1),3^(k-1)+3^(k-1)+3^(k-1)),(3^(k-1)+3^(k-1)+3^(k-1),3^(k-1)+3^(k-1)+3^(k-1),3^(k-1)+3^(k-1)+3^(k-1)),(3^(k-1)+3^(k-1)+3^(k-1),3^(k-1)+3^(k-1)+3^(k-1),3^(k-1)+3^(k-1)+3^(k-1)):}]`
`=[{:(3.3^(k-1),3.3^(k-1) ,3.3^(k-1)),(3.3^(k-1),3.3^(k-1),3.3^(k-1)),(3.3^(k-1),3.3^(k-1),3.3^(k-1)):}]=[{:(3^(k),3^(k),3^(k)),(3^(k),3^(k),3^(k)),(3^(k),3^(k),3^(k)):}]`
`therefore A^(n) also true for all the number n,
hence proved .
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[(1 1 1),( 1 1 1),( 1 1 1)] , then prove that A^n=|(3^(n-1)3^(n-1)3^(n-1)),(3^(n-1)3^(n-1)3^(n-1)),(3^(n-1)3^(n-1)3^(n-1))| for every positive integer ndot

If A=[[1, 1, 1],[ 1, 1, 1],[ 1, 1, 1]] , prove that A^n=[[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)],[3^(n-1),3^(n-1),3^(n-1)]], n in N.

If A=[(1,1,1),(1,1,1),(1,1,1)] then show that A^n=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))] .

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that : 1+2+3++n=(n(n+1))/2

Prove that (1)/(1!(n-1)!) + (1)/(3!(n-3)!)+ (1)/(5!(n-5)!) + …….= (2^(n-1))/(n!)

Prove that : 1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

If n ge 1 is a positive integer, then prove that 3^(n) ge 2^(n) + n . 6^((n - 1)/(2))

If A=[(a, b),(0, 1)] , prove that A^n=[(a^n,b((a^n-1)/(a-1))),(0 ,1)] for every positive integer n .

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .