Home
Class 12
MATHS
If A=[(3 , -4), (1 , -1) ] , then prove ...

If A=`[(3 , -4), (1 , -1) ]` , then prove that `A^n=[(1+2n , -4n), (n , 1-2n) ]` , where n is any positive integer.

Text Solution

Verified by Experts

The correct Answer is:
N/a

For n=1
`a^(n) =[{:(1+2n,-4n),(n,1-2n):}],=[{:(3,-4),(1,-1):}]` which is true
therefore ,`A^(n) ` is any postitive integer .
`therefore a^(n) =[{:(1+2n,-4k),(k,1-2k):}] `
for n=K+1,
`A^(K+1)=A^(k).A `
`=[{:(1+2k,-4k),(k,1-2k):}][{:(3,-4),(1,-1):}]`
`=[{:(3+6k-4k,-4-8k+4k),(3k+1-2k,-4k-1k+2k):}]`
`=[{:(1+2(k+1),-4(k+1)),(1+k,1-2(k+1)):}]`
therefore ,`A^(n)` is also true for `n=K+1.`
thus , by the priciple of mathematical inducation , `A^(n)` is true all positive integers n. henceproved.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

The equatin 2x = (2n +1)pi (1 - cos x) , (where n is a positive integer)

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

if A=[{:(3,-4),(1m,-1):}], then show that A^(n)=[{:(1+2n,-4n),(n,1-2n):}] is true for all natural values of n.

Prove that 2^n >1+nsqrt(2^(n-1)),AAn >2 where n is a positive integer.

By using binomial theorem prove that (2^(3n)-7n-1) is divisible by 49 where n is a positive integer.

If A=[(a, b),(0, 1)] , prove that A^n=[(a^n,b((a^n-1)/(a-1))),(0 ,1)] for every positive integer n .

Prove the following by principle of mathematical induction If A=[[3,-4] , [1,-1]] , then A^n=[[1+2n, -4n] , [n, 1-2n]] for every positive integer n

If A=[[1,1],[1,1]] ,prove that A^n=[[2^(n-1),2^(n-1)],[2^(n-1),2^(n-1)]] , for all positive integers n.

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer