Home
Class 12
MATHS
for what values of x: [1" "2" "1][{:...

for what values of x:
`[1" "2" "1][{:(1,2,0),(2,0,1),(1,0,2):}][{:(0),(2),(x):}]=0? `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix multiplication, we need to find the values of \( x \) such that: \[ [1 \quad 2 \quad 1] \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ x \end{pmatrix} = 0 \] ### Step 1: Perform the matrix multiplication First, we multiply the second matrix by the third matrix: \[ \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ x \end{pmatrix} \] Calculating each row: 1. For the first row: \[ 1 \cdot 0 + 2 \cdot 2 + 0 \cdot x = 0 + 4 + 0 = 4 \] 2. For the second row: \[ 2 \cdot 0 + 0 \cdot 2 + 1 \cdot x = 0 + 0 + x = x \] 3. For the third row: \[ 1 \cdot 0 + 0 \cdot 2 + 2 \cdot x = 0 + 0 + 2x = 2x \] Thus, the result of the multiplication is: \[ \begin{pmatrix} 4 \\ x \\ 2x \end{pmatrix} \] ### Step 2: Multiply the result by the first matrix Now we multiply the first matrix by the result: \[ [1 \quad 2 \quad 1] \begin{pmatrix} 4 \\ x \\ 2x \end{pmatrix} \] Calculating this gives: \[ 1 \cdot 4 + 2 \cdot x + 1 \cdot 2x = 4 + 2x + 2x = 4 + 4x \] ### Step 3: Set the equation to zero Now we set the result equal to zero: \[ 4 + 4x = 0 \] ### Step 4: Solve for \( x \) To find \( x \), we can rearrange the equation: \[ 4x = -4 \] Dividing both sides by 4 gives: \[ x = -1 \] ### Conclusion The value of \( x \) that satisfies the equation is: \[ \boxed{-1} \]

To solve the equation given by the matrix multiplication, we need to find the values of \( x \) such that: \[ [1 \quad 2 \quad 1] \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ x \end{pmatrix} = 0 \] ### Step 1: Perform the matrix multiplication ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0

For what values of x : [[1, 2, 1]][[1 ,2 ,0],[ 2, 0, 1],[ 1, 0, 2]][[0],[ 2],[x]]=O ?

Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and B=[{:(,4,x),(,0,1):}]

The value of x so that [[1,x,1]][[1,3,2] , [0,5,1] , [0,3,2]][[1], [1], [x]]=0 is

For what value of x is the matrix A=[(0,1,-2),(1,0,3),(x,3,0)] a skew-symmetric matrix?

For what value of x is the matrix A=[(0,1,-2),(1,0,3),(x,3,0)] a skew-symmetric matrix?

A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)] then , the value of c and d are

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

If [(1,0,0),(0, 0, 1),(0,1,0)][(x),(y),(z)]=[(2),(-1),(3)] , find x ,\ y ,\ z .