Home
Class 12
MATHS
If A=[3 1 1 2], show that A^2-5A+71=0. H...

If `A=[3 1 1 2]`, show that `A^2-5A+71=0`. Hence find `A^(-1)`.

Text Solution

Verified by Experts

The correct Answer is:
N/a

` A^(2)=A.A=[{:(3,1),(-1,2):}][{:(3,1),(-1,2):}] `
`=[{:(9-1,3+2),(-3-2,-1+4):}]=[{:(8,5),(-5,3):}]`
` Now, L.H.S =A^(2)-5A +7I_(2)`
`=[{:(8,5),(-5,3):}]-5[{:(3,1)(-1,2):}]+7[{:(1,0),(0,1):}]`
`=[{:(8,5),(-5,3):}]-[{:(15,5),(-5,10):}]+[{:(7,0),(0,7):}]`
`=[{:(8-15+7,5-5+0),(-5+50,0-3-10+7):}]`
`=[{:(0,0),(0,0):}]`
`=O=R.H.S.` hence proved .
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

If A=[(3, 1),(-1 ,2)] , show that A^2-5A+7I=O . Hence, find A^(-1) .

If A=[[3, 1],[-1, 2]] , show that A^2-5A+7I=0

If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]] , show that A^2-5A+7I=0 . Hence find A^(-1) .

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

If A=[[2,-1],[-1, 2]] and I is the identity matrix of order 2, then show that A^2=4A-3I Hence find A^(-1) .

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-4A+5I=o . Hence Find A^(-1) .

For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I_3=O . Hence, find A^(-1) .

If A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

If A=[[3, 1],[-1 ,2]] , show that A^2-5A+7I=O . Use this to find A^4