Home
Class 12
MATHS
find x, if [x" "-5" "-1][{:(1,0,2),(0...

find x, if
`[x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the question, we need to find the value of \( x \) such that the product of the matrices equals zero. Let's go through the solution step by step. ### Step 1: Define the matrices We have the first matrix: \[ A = \begin{bmatrix} x & -5 & -1 \end{bmatrix} \] The second matrix: \[ B = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \] And the third matrix: \[ C = \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} \] ### Step 2: Multiply the first two matrices We need to multiply matrix \( A \) and matrix \( B \): \[ A \cdot B = \begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \] Calculating the product: - The first element: \[ x \cdot 1 + (-5) \cdot 0 + (-1) \cdot 2 = x - 2 \] - The second element: \[ x \cdot 0 + (-5) \cdot 2 + (-1) \cdot 0 = -10 \] - The third element: \[ x \cdot 2 + (-5) \cdot 1 + (-1) \cdot 3 = 2x - 5 - 3 = 2x - 8 \] Thus, we have: \[ A \cdot B = \begin{bmatrix} x - 2 & -10 & 2x - 8 \end{bmatrix} \] ### Step 3: Multiply the result with the third matrix Now we multiply the result with matrix \( C \): \[ \begin{bmatrix} x - 2 & -10 & 2x - 8 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} \] Calculating this product: \[ (x - 2) \cdot x + (-10) \cdot 4 + (2x - 8) \cdot 1 = x^2 - 2x - 40 + 2x - 8 \] Simplifying: \[ x^2 - 2x + 2x - 40 - 8 = x^2 - 48 \] ### Step 4: Set the equation to zero We set the expression equal to zero: \[ x^2 - 48 = 0 \] ### Step 5: Solve for \( x \) Rearranging gives: \[ x^2 = 48 \] Taking the square root of both sides: \[ x = \pm \sqrt{48} = \pm 4\sqrt{3} \] ### Final Answer Thus, the values of \( x \) are: \[ x = 4\sqrt{3} \quad \text{or} \quad x = -4\sqrt{3} \]

To solve the equation given in the question, we need to find the value of \( x \) such that the product of the matrices equals zero. Let's go through the solution step by step. ### Step 1: Define the matrices We have the first matrix: \[ A = \begin{bmatrix} x & -5 & -1 \end{bmatrix} \] The second matrix: ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

for what values of x: [1" "2" "1][{:(1,2,0),(2,0,1),(1,0,2):}][{:(0),(2),(x):}]=0?

for what values of x: [1" "2" "1][{:(1,2,0),(2,0,1),(1,0,2):}][{:(0),(2),(x):}]=0?

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0

Find x, if [x-5-1][[1, 0 ,2 ],[0,2, 1 ],[2 ,0 ,3]][[x],[4] ,[1]]=O .

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]

Find the value of x such that [(1,x,1)][(1, 3, 2),( 2, 5, 1), (15, 3, 2)][(1),( 2),(x)]=0

Find the value of x, given that: A^2=B, A=[{:(,2,12),(,0,1):}] and B=[{:(,4,x),(,0,1):}]

If [{:(,x-y,1,z),(,2x-y,0,w):}]=[{:(,-1,1,4),(,0,0,5):}], "find x,y,z,w"

If [1,1,x][[1,0,2],[0,2,1],[2,1,0]][[1],[1],[1]]=O find x