Home
Class 12
MATHS
If A=[{:(alpha,beta),(gamma,alpha):}] is...

If `A=[{:(alpha,beta),(gamma,alpha):}]` is such that `A^2=I` , then `1+alpha^2+betagamma=0` (b) `1-alpha^2+betagamma=0` (c) `1-alpha^2-betagamma=0` (d) `1+alpha^2-betagamma=0`

A

`1+alpha^(2)+betagamma =0`

B

`1-alpha^(2) +beta gamma =0`

C

`1-alpha^(2)-beta gamma=0`

D

`1+alpha^(2)-beta gamma =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the condition on the parameters \( \alpha \), \( \beta \), and \( \gamma \) such that the matrix \( A \) defined as \[ A = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \] satisfies the equation \( A^2 = I \), where \( I \) is the identity matrix. ### Step-by-Step Solution: **Step 1: Compute \( A^2 \)** To find \( A^2 \), we multiply the matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \cdot \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \] Calculating this gives: \[ A^2 = \begin{pmatrix} \alpha^2 + \beta \gamma & \alpha \beta + \beta \alpha \\ \gamma \alpha + \alpha \gamma & \gamma \beta + \alpha^2 \end{pmatrix} \] This simplifies to: \[ A^2 = \begin{pmatrix} \alpha^2 + \beta \gamma & 2\alpha \beta \\ 2\gamma \alpha & \gamma \beta + \alpha^2 \end{pmatrix} \] **Step 2: Set \( A^2 \) equal to the identity matrix \( I \)** The identity matrix \( I \) is given by: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Setting \( A^2 \) equal to \( I \): \[ \begin{pmatrix} \alpha^2 + \beta \gamma & 2\alpha \beta \\ 2\gamma \alpha & \gamma \beta + \alpha^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This gives us the following equations: 1. \( \alpha^2 + \beta \gamma = 1 \) 2. \( 2\alpha \beta = 0 \) 3. \( 2\gamma \alpha = 0 \) 4. \( \gamma \beta + \alpha^2 = 1 \) **Step 3: Analyze the equations** From the second equation \( 2\alpha \beta = 0 \), we can conclude that either \( \alpha = 0 \) or \( \beta = 0 \). From the third equation \( 2\gamma \alpha = 0 \), we conclude that either \( \gamma = 0 \) or \( \alpha = 0 \). **Case 1: If \( \alpha = 0 \)** Substituting \( \alpha = 0 \) into the first equation gives: \[ 0 + \beta \gamma = 1 \implies \beta \gamma = 1 \] Substituting \( \alpha = 0 \) into the fourth equation gives: \[ \gamma \beta + 0 = 1 \implies \beta \gamma = 1 \] Both equations are consistent. **Case 2: If \( \beta = 0 \)** Substituting \( \beta = 0 \) into the first equation gives: \[ \alpha^2 + 0 = 1 \implies \alpha^2 = 1 \implies \alpha = \pm 1 \] Substituting \( \beta = 0 \) into the fourth equation gives: \[ \gamma \cdot 0 + \alpha^2 = 1 \implies \alpha^2 = 1 \] Both equations are consistent. **Step 4: Conclusion** From the equations derived, we can summarize: 1. If \( \alpha = 0 \), then \( \beta \gamma = 1 \). 2. If \( \beta = 0 \), then \( \alpha^2 = 1 \). Thus, we can conclude that: \[ 1 - \alpha^2 - \beta \gamma = 0 \] This matches option (c): \( 1 - \alpha^2 - \beta \gamma = 0 \). ### Final Answer: (c) \( 1 - \alpha^2 - \beta \gamma = 0 \) ---

To solve the problem, we need to find the condition on the parameters \( \alpha \), \( \beta \), and \( \gamma \) such that the matrix \( A \) defined as \[ A = \begin{pmatrix} \alpha & \beta \\ \gamma & \alpha \end{pmatrix} \] satisfies the equation \( A^2 = I \), where \( I \) is the identity matrix. ...
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 3.4|18 Videos
  • LINEAR PROGRAMMING

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|9 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If A= [(alpha,beta),(gamma,-alpha)] is such that A^(2)=1 , then

If A=[alphabetagamma-alpha] is such that A^2=I , then 1+alpha^2+betagamma=0 (b) 1-alpha^2+betagamma=0 (c) 1-alpha^2-betagamma=0 (d) 1+alpha^2-betagamma=0

If A=[[alpha,beta],[gamma,alpha]] is such that A^2=I , then (A) 1+alpha^2+betagamma=0 (B) 1-alpha^2+betagamma=0 (C) 1-alpha^2-betagamma=0 (D) 1+alpha^2-betagamma=0

If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed unit matrix, then alpha,beta and gamma should satisfy the relation. a. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If [alphabetagamma-alpha] is to be square root of two-rowed unit matrix, then alpha,betaa n dgamma should satisfy the relation. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha,beta,gamma, in (0,pi/2) , then prove that (s i(alpha+beta+gamma))/(sinalpha+sinbeta+singamma)<1

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha,beta,gamma are different from 1 and are the roots of a x^3+b x^2+c x+d=0a n d(beta-gamma)(gamma-alpha)(alpha-beta)=(25)/2 , then prove that |alpha/(1-alpha)beta/(1-beta)gamma/(1-gamma)alphabetagammaalpha^2beta^2gamma^2|=(25 d)/(2(a+b+c+d))

If 2x^(3) + 3x^(2) + 5x +6=0 has roots alpha, beta, gamma then find alpha + beta + gamma, alphabeta + betagamma + gammaalpha and alpha beta gamma