Home
Class 12
MATHS
Find the values of the following determi...

Find the values of the following determinants
`|{:(1,1,1),(5,-3,1),(7,4,-2):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 5 & -3 & 1 \\ 7 & 4 & -2 \end{vmatrix} \] we will follow these steps: ### Step 1: Write down the determinant We start with the determinant as given: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 5 & -3 & 1 \\ 7 & 4 & -2 \end{vmatrix} \] ### Step 2: Apply column transformations We will perform column operations to simplify the determinant. Specifically, we will replace the second column with the second column minus the first column, and the third column with the third column minus the first column. 1. **Column 2**: \(C_2 \leftarrow C_2 - C_1\) 2. **Column 3**: \(C_3 \leftarrow C_3 - C_1\) After performing these operations, we get: \[ \Delta = \begin{vmatrix} 1 & 0 & 0 \\ 5 & -8 & -4 \\ 7 & -3 & -9 \end{vmatrix} \] ### Step 3: Expand the determinant Now we can expand the determinant along the first row. The determinant can be calculated as follows: \[ \Delta = 1 \cdot \begin{vmatrix} -8 & -4 \\ -3 & -9 \end{vmatrix} \] ### Step 4: Calculate the 2x2 determinant Now we will calculate the 2x2 determinant: \[ \begin{vmatrix} -8 & -4 \\ -3 & -9 \end{vmatrix} = (-8)(-9) - (-4)(-3) = 72 - 12 = 60 \] ### Step 5: Combine results Thus, we have: \[ \Delta = 1 \cdot 60 = 60 \] ### Final Result The value of the determinant is: \[ \Delta = 60 \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4b|23 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Find the values of the following determinants |{:(3,4),(1,2):}|

Find the values of the following determinants |{:(12,-10,5),(3,2,-1),(-4,0,3):}|

Find the values of the following determinants |{:(4,0,2),(1,5,-6),(3,-2,8):}|

Find the values of the following determinants |{:(-3,-2),(1,5):}|

Find the value of the "determinant" |{:(3,4,7),(-1,6,5),(2,8,10):}|

Find the value of the determinant |{:(1,2,4),(3,4,9),(2,-1,6):}|

Calculate the value of the determinant |{:(1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20):}|

Without expanding, show that the value of the following determinant is zero: |[49, 1, 6], [39, 7, 4], [26, 2, 3]|

Find the inverse of the following matrices if exist : (i) |{:(5,-3),(2,2):}| (ii) |{:(1,-3),(-1,2):}| (iii) |{:(1,0,-1),(3,4,5),(0,-6,-7):}| (iv) |{:(1,-3,3),(2,2,-4),(2,0,2):}| (v) |{:(1,2,1),(1,-1,-2),(1,2,-1):}| (vi) |{:(4,-2,-1),(1,1,-1),(-1,2,4):}|

Find the value of the determinant, |[0,2,7],[1,3,0],[2,0,5]|