Home
Class 12
MATHS
Find the values of the following determi...

Find the values of the following determinants
`|{:(12,-10,5),(3,2,-1),(-4,0,3):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 12 & -10 & 5 \\ 3 & 2 & -1 \\ -4 & 0 & 3 \end{vmatrix} \] we will use the method of cofactor expansion along the first row. ### Step 1: Write the determinant using cofactor expansion Using the first row, we have: \[ D = 12 \cdot \begin{vmatrix} 2 & -1 \\ 0 & 3 \end{vmatrix} - (-10) \cdot \begin{vmatrix} 3 & -1 \\ -4 & 3 \end{vmatrix} + 5 \cdot \begin{vmatrix} 3 & 2 \\ -4 & 0 \end{vmatrix} \] ### Step 2: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} 2 & -1 \\ 0 & 3 \end{vmatrix} = (2 \cdot 3) - (0 \cdot -1) = 6 \] 2. For the second determinant: \[ \begin{vmatrix} 3 & -1 \\ -4 & 3 \end{vmatrix} = (3 \cdot 3) - (-1 \cdot -4) = 9 - 4 = 5 \] 3. For the third determinant: \[ \begin{vmatrix} 3 & 2 \\ -4 & 0 \end{vmatrix} = (3 \cdot 0) - (2 \cdot -4) = 0 + 8 = 8 \] ### Step 3: Substitute back into the determinant formula Now substituting back into the expression for \(D\): \[ D = 12 \cdot 6 + 10 \cdot 5 + 5 \cdot 8 \] ### Step 4: Calculate the final value Calculating each term: 1. \(12 \cdot 6 = 72\) 2. \(10 \cdot 5 = 50\) 3. \(5 \cdot 8 = 40\) Now, summing these values: \[ D = 72 + 50 + 40 = 162 \] ### Final Answer Thus, the value of the determinant is \[ \boxed{162} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4b|23 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Find the values of the following determinants |{:(3,4),(1,2):}|

Find the values of the following determinants |{:(-3,-2),(1,5):}|

Find the values of the following determinants |{:(1,1,1),(5,-3,1),(7,4,-2):}|

Find the values of the following determinants |{:(4,0,2),(1,5,-6),(3,-2,8):}|

Find the value of the "determinant" |{:(3,4,7),(-1,6,5),(2,8,10):}|

Find the value of the determinant |{:(1,2,4),(3,4,9),(2,-1,6):}|

Find the value of the determinant, |[0,2,7],[1,3,0],[2,0,5]|

Calculate the value of the determinant |{:(1,1,1,1),(1,2,3,4),(1,3,6,10),(1,4,10,20):}|

Find the value of the determinant |[2,-3,6],[3,-4,-11],[5,2,4]|

(i) Find the value of the determinant |[2,3],[(1)/(2),-(1)/(2)]| .