Home
Class 12
MATHS
|[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0...

` |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|`=0

Text Solution

Verified by Experts

The correct Answer is:
1,2,-3
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4d|13 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4a|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If |[x,-6,1],[2x,-3,3],[0,1,2]| =0 find the value of x

112. If f(x)= [[x,x^2,x^3],[1,2x,3x^2],[0,2,6x]] find f'(x)

If |[1, x, x^2], [x, x^2, 1], [x^2, 1, x]|=3, then find the value of |[x^3-1, 0, x-x^4], [0, x-x^4, x^3-1], [x-x^4, x^3-1, 0]|

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

If |(x^2+x,x+1,x-2),(2x^2+3x-1,3x,3x-3),(x^2+2x+3,2x-1,2x-1)|=ax-12 then 'a' is equal to (1) 12 (2) 24 (3) -12 (4) -24

Solve: |[x^2-1, x^2+2x+1, 2x^2+3x+1], [2x^2+x-1, 2x^2+5x-3, 2x^2+4x-3], [6x^2-x-2, 6x^2-7x+2, 12x^2-5x-2]|=0.

" If " |{:(x^(2)+x,,x+1,,x-2),(2x^(2)+3x-1,,3x,,3x-3),(x^(2)+2x+3,,2x-1,,2x-1):}|=xA +B then find A and B

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

If Delta (x) =|{:(x^(2)-5x+3,2x-5,3),(3x^(2)+x+4,6x+1,9),(7x^(2)-6x+9,14x-6,21):}| = ax^(3) +bx^(2)+cx+d , then

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4b
  1. Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-...

    Text Solution

    |

  2. Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|=(x-y)(y-z)(z-x)...

    Text Solution

    |

  3. Prove that : |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=a^(2)(3x+a)

    Text Solution

    |

  4. Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

    Text Solution

    |

  5. Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)...

    Text Solution

    |

  6. Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

    Text Solution

    |

  7. Using the properties of determinants, prove that |{:((y+z)^(2)," "x...

    Text Solution

    |

  8. Prove that : |{:(a+b,b,c),(b+c,c,a),(c+a,a,b):}|=3 abc-a^(3)-b^(3)-c^(...

    Text Solution

    |

  9. Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a...

    Text Solution

    |

  10. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  11. Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c...

    Text Solution

    |

  12. Prove that : |{:(0,a-b,a-c),(b-a,0,b-c),(c-a,c-b,0):}|=0

    Text Solution

    |

  13. |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  14. Solve the equation |{:(x+a,x+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

    Text Solution

    |

  15. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  16. If 2s=a+b+c and A=|[a^2,(s-a)^2,(s-a)^2],[(s-b)^2,b^2,(s-b)^2],[(s-c)^...

    Text Solution

    |

  17. If the sides of a DeltaABC are a, b, c and |{:(a^(2),b^(2),c^(2)),((a+...

    Text Solution

    |

  18. If the pth, qth and rth terms of a G.P, are x,y and z repectively, the...

    Text Solution

    |

  19. Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(z-x)...

    Text Solution

    |

  20. Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

    Text Solution

    |