Home
Class 12
MATHS
Solve the equation |{:(x+a,x+b,x+c),(x+b...

Solve the equation `|{:(x+a,x+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the determinant \[ \left| \begin{array}{ccc} x+a & x+b & x+c \\ x+b & x+c & x+a \\ x+c & x+a & x+b \end{array} \right| = 0, \] we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \left| \begin{array}{ccc} x+a & x+b & x+c \\ x+b & x+c & x+a \\ x+c & x+a & x+b \end{array} \right| \] ### Step 2: Apply Row Transformation We can simplify the determinant using the property of determinants that allows us to add rows. We can add all three rows together to the first row: \[ R_1 \rightarrow R_1 + R_2 + R_3 \] This gives: \[ D = \left| \begin{array}{ccc} 3x + a + b + c & x+b & x+c \\ x+b & x+c & x+a \\ x+c & x+a & x+b \end{array} \right| \] ### Step 3: Factor Out Common Terms Now, we can factor out \(3x + a + b + c\) from the first row: \[ D = (3x + a + b + c) \left| \begin{array}{ccc} 1 & 1 & 1 \\ x+b & x+c & x+a \\ x+c & x+a & x+b \end{array} \right| \] ### Step 4: Apply Column Transformation Next, we can perform column operations to simplify the determinant further. We can subtract the second column from the first and the third from the second: \[ C_1 \rightarrow C_1 - C_2, \quad C_2 \rightarrow C_2 - C_3 \] This results in: \[ D = (3x + a + b + c) \left| \begin{array}{ccc} 0 & 1 & 1 \\ b - c & c - a & a - b \\ c - a & a - b & b - c \end{array} \right| \] ### Step 5: Calculate the Remaining Determinant Now we can calculate the determinant of the 3x3 matrix. The first row has a zero, so we can expand along that row: \[ D = (3x + a + b + c) \cdot 0 + 1 \cdot \left| \begin{array}{cc} b - c & a - b \\ c - a & b - c \end{array} \right| - 1 \cdot \left| \begin{array}{cc} b - c & c - a \\ c - a & a - b \end{array} \right| \] ### Step 6: Set the Determinant to Zero Now we set the determinant \(D\) to zero: \[ (3x + a + b + c) \cdot \text{determinant} = 0 \] This gives us two cases to solve: 1. \(3x + a + b + c = 0\) 2. The determinant of the 2x2 matrix must also equal zero. ### Step 7: Solve for \(x\) From the first equation: \[ 3x + a + b + c = 0 \implies 3x = - (a + b + c) \implies x = -\frac{a + b + c}{3} \] ### Step 8: Conclude Thus, the solution for \(x\) is: \[ x = -\frac{a + b + c}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4c|7 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4d|13 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4a|6 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If a ne b ne c , then solution of equation |{:(x-a,x-b,x-c),(x-b,x-c,x-a),(x-c, x-a,x-b):}|=0" "is:

Solve the equation |[a-x, c, b], [ c, b-x, a], [b, a, c-x]|=0 where a+b+c!=0.

If a,b,c, in R, find the number of real root of the equation |{:(x,c,-b),(-c,x,a),(b,-a,x):}| =0

The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are different) is satisfied by (A) x=(a+b+c0 (B) x= 1/3 (a+b+c) (C) x=0 (D) none of these

Solve the equation: |[a,a,x],[a,a,a],[b,x,b]|=0

Solve the following determinant equation: |[x+a, b, c], [c, x+b, a], [a ,b, x+c]|=0

Show that the roots of the equation: (x-a) (x -b) +(x- b) (x-c)+ (x- c) (x -a) =0 are always real and these cannot be equal unless a=b=c

Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a),(,a,b,x+c):}|=0 and x=0

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4b
  1. Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-...

    Text Solution

    |

  2. Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|=(x-y)(y-z)(z-x)...

    Text Solution

    |

  3. Prove that : |{:(x+a,x,x),(x,x+a,x),(x,x,x+a):}|=a^(2)(3x+a)

    Text Solution

    |

  4. Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

    Text Solution

    |

  5. Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)...

    Text Solution

    |

  6. Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

    Text Solution

    |

  7. Using the properties of determinants, prove that |{:((y+z)^(2)," "x...

    Text Solution

    |

  8. Prove that : |{:(a+b,b,c),(b+c,c,a),(c+a,a,b):}|=3 abc-a^(3)-b^(3)-c^(...

    Text Solution

    |

  9. Prove that : |{:(a^(2),b^(2)+c^(2),bc),(b^(2),c^(2)+a^(2),ca),(c^(2),a...

    Text Solution

    |

  10. Prove that : (i) |{:(a,c,a+c),(a+b,b,a),(b,b+c,c):}|=2 abc (ii) Pr...

    Text Solution

    |

  11. Prove that : |{:(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab):}|=(a-b)(b-c)(c...

    Text Solution

    |

  12. Prove that : |{:(0,a-b,a-c),(b-a,0,b-c),(c-a,c-b,0):}|=0

    Text Solution

    |

  13. |[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]|=0

    Text Solution

    |

  14. Solve the equation |{:(x+a,x+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

    Text Solution

    |

  15. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  16. If 2s=a+b+c and A=|[a^2,(s-a)^2,(s-a)^2],[(s-b)^2,b^2,(s-b)^2],[(s-c)^...

    Text Solution

    |

  17. If the sides of a DeltaABC are a, b, c and |{:(a^(2),b^(2),c^(2)),((a+...

    Text Solution

    |

  18. If the pth, qth and rth terms of a G.P, are x,y and z repectively, the...

    Text Solution

    |

  19. Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(z-x)...

    Text Solution

    |

  20. Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

    Text Solution

    |