Home
Class 12
MATHS
Choose the correct answer from the follo...

Choose the correct answer from the following :
The value of `|{:(0,2,0),(1,3,5),(-1,0,4):}|is:`

A

-6

B

18

C

-18

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( | \begin{pmatrix} 0 & 2 & 0 \\ 1 & 3 & 5 \\ -1 & 0 & 4 \end{pmatrix} | \), we will use the formula for the determinant of a 3x3 matrix. ### Step-by-step Solution: 1. **Write the Determinant**: \[ D = \begin{vmatrix} 0 & 2 & 0 \\ 1 & 3 & 5 \\ -1 & 0 & 4 \end{vmatrix} \] 2. **Apply the Determinant Formula**: The formula for the determinant of a 3x3 matrix is: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: - \( a = 0, b = 2, c = 0 \) - \( d = 1, e = 3, f = 5 \) - \( g = -1, h = 0, i = 4 \) 3. **Calculate Each Part**: - First term: \( a(ei - fh) = 0(3 \cdot 4 - 5 \cdot 0) = 0 \) - Second term: \( -b(di - fg) = -2(1 \cdot 4 - 5 \cdot -1) = -2(4 + 5) = -2 \cdot 9 = -18 \) - Third term: \( c(dh - eg) = 0(1 \cdot 0 - 3 \cdot -1) = 0 \) 4. **Combine the Results**: \[ D = 0 - 18 + 0 = -18 \] 5. **Final Answer**: The value of the determinant is: \[ | \begin{pmatrix} 0 & 2 & 0 \\ 1 & 3 & 5 \\ -1 & 0 & 4 \end{pmatrix} | = -18 \] ### Conclusion: The correct answer is \(-18\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4g|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer from the following : The value of |{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|is:

Choose the correct answer from the following : The inverse of matrix |{:(1,3),(2,-1):}|is:

find the value of |{:(1,,2,,4),(-1,,3,,0),(4,,1,,0):}|

Choose the correct answer from the following : The verices of a triangle (2,-4), (-6,3) and (3,5). The area of triangle is :

The value of (3^0+5^0)/4^0

Find the values of the following determinants |{:(4,0,2),(1,5,-6),(3,-2,8):}|

If A= ((1,0,0),(2,1,0),(3,2,1)), U_(1), U_(2), and U_(3) are column matrices satisfying AU_(1) =((1),(0),(0)), AU_(2) = ((2),(3),(0))and AU_(3) = ((2),(3),(1)) and U is 3xx3 matrix when columns are U_(1), U_(2), U_(3) then answer the following questions The value of (3 2 0) U((3),(2),(0)) is

Find the values of the following determinants |{:(12,-10,5),(3,2,-1),(-4,0,3):}|

Find the value of |[1, 2, 4],[-1,3, 0],[4 ,1, 0]|

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'(0), is