Home
Class 12
MATHS
Choose the correct answer from the follo...

Choose the correct answer from the following :
The value of `|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|is:`

A

`(a-b)(b-c)(c-a)`

B

`-(a-b)(b-c)(c-a)`

C

`(a+b+c)(a-b)(b-c)(c-a)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( | \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix} | \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \] ### Step 2: Apply Row Operations We can simplify the determinant using row operations. We will perform the following operations: - \( R_1 \rightarrow R_1 - R_2 \) - \( R_2 \rightarrow R_2 - R_3 \) This gives us: \[ D = \begin{vmatrix} 0 & a-b & a^2 - b^2 \\ 0 & b-c & b^2 - c^2 \\ 1 & c & c^2 \end{vmatrix} \] ### Step 3: Factor the Differences of Squares Recall that \( a^2 - b^2 = (a-b)(a+b) \) and \( b^2 - c^2 = (b-c)(b+c) \). We can rewrite the determinant as: \[ D = \begin{vmatrix} 0 & a-b & (a-b)(a+b) \\ 0 & b-c & (b-c)(b+c) \\ 1 & c & c^2 \end{vmatrix} \] ### Step 4: Factor Out Common Terms We can factor out \( (a-b) \) from the first row and \( (b-c) \) from the second row: \[ D = (a-b)(b-c) \begin{vmatrix} 0 & 1 & a+b \\ 0 & 1 & b+c \\ 1 & c & c^2 \end{vmatrix} \] ### Step 5: Expand the Determinant Now we can expand the determinant: \[ D = (a-b)(b-c) \begin{vmatrix} 1 & a+b \\ 1 & b+c \\ c & c^2 \end{vmatrix} \] ### Step 6: Calculate the 2x2 Determinant Calculating the 2x2 determinant: \[ = 1 \cdot (b+c) - 1 \cdot (a+b) = (b+c) - (a+b) = c - a \] ### Step 7: Final Expression for the Determinant Thus, we have: \[ D = (a-b)(b-c)(c-a) \] ### Conclusion The value of the determinant \( | \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix} | \) is: \[ D = (a-b)(b-c)(c-a) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4g|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer from the following : The value of |{:(0,2,0),(1,3,5),(-1,0,4):}|is:

Choose the correct answer from the following : The value of |{:(bc,-c^2,ca),(ab,ac,-a^(2)),(-b^2,bc,ab):}|is:

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

which of the following is // are true for Delta= |{:(a^(2),,1,,a+c),(0,,b^(2)+1,,b+c),(0,,b+c,,c^(2)+1):}| ?

Choose the correct answer from the following : If a, b, c are in arithmetic progression, then |{:(x+1,x+4,x+a),(x+2,x+5,x+b),(x+3,x+6,x+c):}|=

If a, b, c are three distinct positive real numbers, then the least value of ((1+a+a^(2))(1+b+b^(2))(1+c+c^(2)))/(abc) , is

If a,b,c are unequal then what is the condition that the value of the following determinant is zero Delta =|(a,a^2,a^3+1),(b,b^2,b^3+1),(c,c^2,c^3+1)|

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

Match the following and choose the correct combination from the options given : (a) {:(A, B, C, D),(3 , 1, 5, 4):} (b) {:(A, B, C, D),(1, 2, 3, 4):} (c) {:(A, B, C, D),(2, 1, 3, 4):} (d) {:(A, B, C, D),(3, 1, 5, 2):}