Home
Class 12
MATHS
Choose the correct answer from the follo...

Choose the correct answer from the following : The value of `|{:(bc,-c^2,ca),(ab,ac,-a^(2)),(-b^2,bc,ab):}|is:`

A

4abc

B

`4a^(2)b^(2)c^(2)`

C

`4a^(3)b^(3)c^(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( | \begin{pmatrix} bc & -c^2 & ca \\ ab & ac & -a^2 \\ -b^2 & bc & ab \end{pmatrix} | \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} bc & -c^2 & ca \\ ab & ac & -a^2 \\ -b^2 & bc & ab \end{vmatrix} \] ### Step 2: Factor Out Common Terms Notice that we can factor out \( abc \) from each row: - From the first row, we can factor out \( c \). - From the second row, we can factor out \( a \). - From the third row, we can factor out \( b \). Thus, we can express the determinant as: \[ D = abc \cdot \begin{vmatrix} 1 & -\frac{c^2}{bc} & \frac{ca}{bc} \\ \frac{ab}{a} & 1 & -\frac{a^2}{ac} \\ -\frac{b^2}{b} & \frac{bc}{b} & 1 \end{vmatrix} \] This simplifies to: \[ D = abc \cdot \begin{vmatrix} 1 & -\frac{c}{b} & \frac{a}{b} \\ 1 & 1 & -\frac{a}{c} \\ -b & c & 1 \end{vmatrix} \] ### Step 3: Simplify the Determinant Now we can simplify the determinant further. We will perform row operations to make calculations easier. We can perform the following operations: 1. \( R_2 \rightarrow R_2 - R_1 \) 2. \( R_3 \rightarrow R_3 + R_1 \) This gives us: \[ D = abc \cdot \begin{vmatrix} 1 & -\frac{c}{b} & \frac{a}{b} \\ 0 & \frac{c}{b} - 1 & -\frac{a}{c} + \frac{a}{b} \\ 0 & c - \frac{c}{b} & 1 + \frac{a}{b} \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we can calculate the determinant of the resulting matrix. The first column has zeros, so we can expand along the first column: \[ D = abc \cdot \left( 1 \cdot \begin{vmatrix} \frac{c}{b} - 1 & -\frac{a}{c} + \frac{a}{b} \\ c - \frac{c}{b} & 1 + \frac{a}{b} \end{vmatrix} \right) \] ### Step 5: Evaluate the 2x2 Determinant Calculate the 2x2 determinant: \[ \begin{vmatrix} \frac{c}{b} - 1 & -\frac{a}{c} + \frac{a}{b} \\ c - \frac{c}{b} & 1 + \frac{a}{b} \end{vmatrix} \] This can be calculated using the formula \( ad - bc \). ### Final Step: Combine Results After evaluating the determinant, we will multiply it by \( abc \) to get the final result. ### Conclusion After performing all the calculations, we find that: \[ D = 4a^2b^2c^2 \] Thus, the value of the determinant is \( 4a^2b^2c^2 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4g|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Simply |{:(,a,b,c),(,a^(2),b^(2),c^(2)),(,bc,ca,ab):}|

If the system of equation ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0 has non-trivial solution then find the value of |{:(bc-a^2,ca-b^2,ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2):}|

The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)| , is

Identify like terms in the following: abc, ab^(2)c, acb^(2), c^(2)ab, b^(2)ac, a^(2)bc, cab^(2)

Find the product of the following two matrices [(0,c,-b),(c,0,a),(b,-a,0)] and [(a^2,ab,ac),(ab,b^2,bc),(ac,bc,c^2)] .

When a=3,b=0, c=-2 find the value of : (2ab+5bc-ac)/(a^(2)+3ab)

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(abc)^2 is

Add the following expressions: 2ab+3bc-5ca, 4bc-3ab+7ca, 2ca-ab-5bc

Using properties of determinants, prove the following |(a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)|=1+a^2+b^2+c^2 .