Home
Class 12
MATHS
Choose the correct answer from the follo...

Choose the correct answer from the following :
If a, b, c are in arithmetic progression, then `|{:(x+1,x+4,x+a),(x+2,x+5,x+b),(x+3,x+6,x+c):}|=`

A

2x

B

1

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to evaluate the determinant: \[ D = \begin{vmatrix} x + 1 & x + 4 & x + a \\ x + 2 & x + 5 & x + b \\ x + 3 & x + 6 & x + c \end{vmatrix} \] where \(a\), \(b\), and \(c\) are in arithmetic progression. ### Step 1: Understanding Arithmetic Progression Since \(a\), \(b\), and \(c\) are in arithmetic progression, we have the relation: \[ 2b = a + c \] ### Step 2: Apply Row Operations We can simplify the determinant using row operations. We will perform the operation \(R_1 \rightarrow R_1 + R_3 - 2R_2\). Calculating \(R_1\): \[ R_1 = (x + 1) + (x + 3) - 2(x + 2) \] This simplifies to: \[ R_1 = (x + 1 + x + 3 - 2x - 4) = 0 \] ### Step 3: Update the Determinant Now, the first row of the determinant becomes: \[ \begin{vmatrix} 0 & \cdots & \cdots \\ x + 2 & x + 5 & x + b \\ x + 3 & x + 6 & x + c \end{vmatrix} \] ### Step 4: Evaluate the Determinant Since the first row has become all zeros, the value of the determinant \(D\) is: \[ D = 0 \] ### Conclusion Thus, the value of the determinant is zero, which means the correct answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4g|10 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.1|8 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4e|4 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer in questions 17 to 19: If a, b, c are in A.P., then the determinant [{:(x+2,x+3,x+2a),(x+3,x+4,x+2b),(x+4,x+5,x+2c):}] is : (a) 0 (b) 1 ( c) x (d) 2x

Choose the correct answer from the following : |{:(x,2),(8,x):}|=|{:(6,8),(9,12):}|,"then x:"

If a-2b+c=1 , then the value of |{:(x+1,x+2,x+a),(x+2,x+3,x+b),(x+3,x+4,x+c):}| is

If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c]|=0

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

If a,b,c are in A.P.and f(x)= |(x+a,x^2+1,1),(x+b, 2x^2-1,1),(x+c,3x^2-2 , 1)| , then f'(x) is :

If a, b, c, are in A.P, then the determinant |(x+2,x+3,x+2a),( x+3,x+4,x+2b ),(x+4,x+5,x+2c)| is (A) 0 (B) 1 (C) x (D) 2x

If the arithmetic mean of x ,\ x+3,\ x+6,\ x+9, and x+12 is 10, the x= (a) 1 (b) 2 (c) 6 (d) 4

a x a x 3 x b x b x 2 x c x c= .............

If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a], [x+3,x+4,x+2b], [x+4,x+5,x+2c]| is(A) 0 (B) 1 (C) x (D) 2x