Home
Class 12
MATHS
Using Cofactors of elements of third col...

Using Cofactors of elements of third column, evaluate `Delta=|[1 , x, yz],[1, y, zx],[1, z, xy]|`

Text Solution

Verified by Experts

`Delta=|{:(1,x,yz),(1,y,zx),(1,z,xy):}|`
Cofactors of the elements of third row
`A_(13)=(-1)^(1+3)|{:(1,y),(1,z):}|=z-y`
`A_(23)=(-1)^(2+3)|{:(1,x),(1,z):}|=(z-x)=x-z`
`A_(33)=(-1)^(3+3)|{:(1,x),(1,y):}|=y+x`
`therefore" "Delta=a_(13)A_(13)+a_(23)A_(23)+a_(33)A_(33)`
`=yz(z-y)+zx(x-z)+xy(y-x)`
`=yz^(2)-y^(2)z+zx^(2)-z^(2)x+xy^(2)-x^(2)y`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.5|18 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.3|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Using Cofactors of elements of third column, evaluate Delta=|(1,x, y z),(1,y, z x),(1,z, x y)|

Using Cofactors of elements of second row, evaluate Delta=|(5, 3, 8),( 2, 0, 1),( 1, 2 ,3)|

show tha |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]| =0

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Find minors and cofactors of all the elements of the determinant |[1,-2],[ 4 ,3]|

solve |[1,yz,yz(y+z)],[1,zx,zx(z+x)],[1,xy,xy(x+y)]|

Write the minor and cofactor of each element of second column in the following determinants and evaluate them: |[1,2,4],[1,3,9],[1,4,16]|

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

Using properties of determinants prove that |(1,1, 1+3x),(1+3y,1,1),(1, 1+3z,1)| =9(3xyz+xy+yz+zx)