Home
Class 12
MATHS
Find the adjoint of each of the matrices...

Find the adjoint of each of the matrices `[{:(1,2),(3,4):}]`

Text Solution

AI Generated Solution

To find the adjoint of the matrix \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\), we will follow these steps: ### Step 1: Find the Minors The minor \(M_{ij}\) of an element \(a_{ij}\) in a matrix is the determinant of the submatrix formed by deleting the \(i\)-th row and \(j\)-th column. 1. **Minor \(M_{11}\)**: Remove the 1st row and 1st column: \[ M_{11} = \begin{vmatrix} 4 \end{vmatrix} = 4 ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

Find adjoint of the matrice in [(1, 2),( 3, 4)]

Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

Compute the adjoint of each of the following matrices: [[1, 2, 2],[ 2 ,1 ,2],[ 2, 2, 1]] (ii) [[1, 2, 5],[ 2, 3,1],[-1, 1, 1]] (iii) [[2,-1, 3],[ 4, 2, 5],[ 0, 4,-1]] (iv) [[2, 0,-1],[ 5, 1, 0],[ 1, 1, 3]] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

Find the inverse of the following matrices [{:(3,-1),(-4,2):}](ii)[{:(2,-6),(1,-2):}]

Using elementary transformations, find the inverse of each of the matrices [[3 ,10],[ 2, 7]]

1.Find the adjoint of the matrix A= [[1,2],[3,4]]

Using elementary transformations, find the inverse of each of the matrices [[2,-6],[ 1,-2]]

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find adjoint of the matrice in[1-1 2 2 3 5-2 0 1]

    Text Solution

    |

  3. Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

    Text Solution

    |

  4. Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" |1-1 2 3 0-...

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[2 1 3 4-1 0-7 2 1]

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x- y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I3=O ...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix, then det(A^(-1)) is equal to det(A) (...

    Text Solution

    |