Home
Class 12
MATHS
Find adjoint of the matrice in[1-1 2 2 3...

Find adjoint of the matrice in`[1-1 2 2 3 5-2 0 1]`

Text Solution

Verified by Experts

`Let A = [{:(1,-1,2),(2,3,5),(-2,0,1):}]`
`A_(23)=(-1)^(1+1)[{:(3,5),(0,1):}]=3,A_(12)=(-1)^(1+2)[{:(2,5),(-2,1):}]=-12`
`A_(13)=(-1)^(1+3)[{:(2,3),(-2,0):}]=6`
`A_(21)=(-1)^(2+3)[{:(-1,2),(0,1):}]=1 A_(22)=(-1)^(2+2)[{:(1,2),(-2,1):}]=5`
`A_(23)=(-1)^(2+3)[{:(1,-1),(-2,0):}]=2`
`A_(31)=(-1)^(3+1)[{:(-1,2),(3,5):}]=-11`
`A_(32)=(-1)^(3+2)[{:(1,2),(2,5):}]=-1A_(33)=(-1)^(3+3)[{:(1,-1),(2,3):}]=5`
`thereforeadjA=[{:(A_(11),A_(12),A_(13)),(A_(21),A_(22),A_(23)),(A_(31),A_(32),A_(33)):}]`
`=[{:(3,-2,6),(1,5,2),(-11,-1,5):}]=[{:(3,1,-11),(-12,5,-1),(6,2,5):}]`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Find adjoint of the matrice in [(1, 2),( 3, 4)]

Find the adjoint of the matrix A=[(-1,-2,-2), (2 ,1,-2), (2,-2, 1)] and hence show that A(a d j\ A)=|A|\ I_3 .

Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

find the adjoint of the matrix A=[(1,2,3),(0,5,0),(2,4,3)]

Find the adjoint of the matrix A=[(1,1,1),(2,1,-3),(-1,2,3)] .

1.Find the adjoint of the matrix A= [[1,2],[3,4]]

Compute the adjoint of the matrix A given by A=[[1, 4, 5],[ 3 ,2, 6],[ 0 ,1, 0]] and verify that A(a d jA)=|A|I=(A d jA)Adot

The adjoint of the matrix A= [{:( 1,2),( 3,-5) :}] is

Compute the adjoint of the matrix A given by A=[[1, 4, 5], [3, 2, 6], [0 ,1 ,0]] and verify that A(a d j\ A)=|A|I=(a d j\ A)Adot

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find adjoint of the matrice in[1-1 2 2 3 5-2 0 1]

    Text Solution

    |

  3. Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

    Text Solution

    |

  4. Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" |1-1 2 3 0-...

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[2 1 3 4-1 0-7 2 1]

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x- y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I3=O ...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix, then det(A^(-1)) is equal to det(A) (...

    Text Solution

    |