Home
Class 12
MATHS
Verify A (a d j A) = (a d j A) A = |A|I ...

Verify `A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]`

Text Solution

Verified by Experts

`A=[{:(2,3),(-4,-6):}]`
`A_(11)=(-1)^(1+2)(-4)=4`
`A_(21)=(-1)^(1+2)(-4)=4,`
`A_(21)=(-1)^(2+1)3=-3`,
`A_(22)=(-1)^(2+2)2=2`
`therefore" adj A"=[{:(-6,4),(-3,2):}]=[{:(-6,-3),(4,2):}]`
`"Now "|A|=[{:(2,3),(-4,-6):}]=-12+12=0`
`"A.(adk A)"=[{:(2,3),(-4,-6):}][{:(-6,-3),(4,2):}]`
`=[{:(-12+12,-6-3),(24-24,12-12):}]`
`[{:(0,0),(0,0):}]=0`
`"(adj A) A"=[{:(-6,-3),(4,2):}][{:(2,3),(-4,-6):}]`
`[{:(-12+12,-18+18),(8-8,12-12):}]`
`[{:(0,0),(0,0):}]=0`
|A| , I=0xxI=0
`therefore" "A.(adj A)=(adj A).A=|A|.I`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)]

Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

If A=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]] , find a d j\ A and verify that A(a d j\ A)=(a d j\ A)A=|A|I_3 .

If A=[[1 ,3 ,3],[ 1, 4 ,3],[ 1, 3, 4]] ,then verify that A a d j A = |A|I . Also find A^(-1) .

Find the adjoint of the following matrices: [(cosalpha,sinalpha),(sinalpha,cosalpha)] (ii) [(1,tanalpha//2),(-tanalpha//2, 1)] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

If A=[[3,-3, 4], [2,-3, 4], [0,-1, 1]] , then a. a d j(a d j A)=A b. |a d j(a d j A)|=1 c. a d j A=I d. none of these

If a d j\ A=[(2, 3),(4,-1)] and a d j\ B=[(1,-2),(-3, 1)] , find a d j\ A Bdot

If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b) 2 (c) 2^3 (d) 2^6

If A=[(1 ,-3),( 2, 0)] , write a d j\ A .

Compute the adjoint of the matrix A given by A=[[1, 4, 5], [3, 2, 6], [0 ,1 ,0]] and verify that A(a d j\ A)=|A|I=(a d j\ A)Adot

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find adjoint of the matrice in[1-1 2 2 3 5-2 0 1]

    Text Solution

    |

  3. Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

    Text Solution

    |

  4. Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" |1-1 2 3 0-...

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[2 1 3 4-1 0-7 2 1]

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x- y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I3=O ...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix, then det(A^(-1)) is equal to det(A) (...

    Text Solution

    |