Home
Class 12
MATHS
Verify A" "(a d j" "A)" "=" "(a d j" "A)...

Verify `A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I"` `|1-1 2 3 0-2 1 0 3|`

Text Solution

Verified by Experts

`therefore" "|A|=[{:(1,-1,2),(3,0,-2),(1,0,3):}]=0`
=1(0-0)-(-1)(9+2)+2(0-0)=11
`rArr" "|A|.I_(3)=11[{:(1,0,0),(0,1,0),(0,0,1):}]=[{:(11,0,0),(0,11,0),(0,0,11):}]`
`A_(11)=(-1)^(1+1)|{:(0,-2),(0,3):}|`
`A_(12)=(-1)^(1+2)[{:(3,-2),(1,3):}]=-11,`
`A_(13)=(-1)^(1+3)[{:(3,0),(1,3):}]=0,`
`A_(21)=(-1)^(2+1)[{:(-1,2),(0,3):}]=1,`
`A_(22)=(-1)^(2+2)[{:(1,2),(1,3):}]=1,`
`A_(23)=(-1)^(2+3)[{:(1,-1),(1,0):}]=2,`
`A_(31)=(-1)^(3+1)[{:(-1,2),(0,-2):}]=8,`
`A_(32)=(-1)^(3+2)[{:(1,2),(3,-2):}]=8,`
`A_(33)=(-1)^(3+3)[{:(1,-1),(3,0):}]=3,`
`therefore" adj A"=[{:(0,-11,0),(3,1,-1),(2,8,3):}]=[{:(0,3,2),(-11,1,8),(0,-1,3):}]`
`"Now A. (adj A)"=[{:(0,-1,2),(3,1,-2),(1,0,3):}]=[{:(0,3,2),(-11,1,8),(0,-1,3):}]`
`=[{:(0+11+0,3-1-2,2-8+6),(0+0+0,9+0+2,6+0-6),(0+0+0,3+0=3,2+0+9):}]`
`=[{:(11,0,0),(0,11,0),(0,0,11):}]`
`"(adj A).A"=[{:(0,3,2),(-11,1,8),(0,-1,3):}]=[{:(1,-1,2),(3,0,-2),(1,0,3):}]`
`=[{:(0+9+2,0+0+0,0-6+6),(-11+3+8,11+0+0,-22-2+24),(0-3+3,0+0+0,0+2+9):}]`
`=[{:(11,0,0),(0,11,0),(0,0,11):}]`
`therefore`A.(adj A)=(adjA)A=|A|.`I_(3)`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)]

If A=[(1 ,-3),( 2, 0)] , write a d j\ A .

If A=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]] , find a d j\ A and verify that A(a d j\ A)=(a d j\ A)A=|A|I_3 .

If A=[[3,-3, 4], [2,-3, 4], [0,-1, 1]] , then a. a d j(a d j A)=A b. |a d j(a d j A)|=1 c. a d j A=I d. none of these

Find the non-singular matrices A , if it is given that a d j\ (A)=[-1-2 1 3 0-3 1-4 1] .

Find A(a d j\ A) for the matrix A=[[1,-2 ,3],[ 0, 2,-1],[-4 ,5, 2]] .

Compute the adjoint of each of the following matrices: [[1, 2, 2],[ 2 ,1 ,2],[ 2, 2, 1]] (ii) [[1, 2, 5],[ 2, 3,1],[-1, 1, 1]] (iii) [[2,-1, 3],[ 4, 2, 5],[ 0, 4,-1]] (iv) [[2, 0,-1],[ 5, 1, 0],[ 1, 1, 3]] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

Find the adjoint of the following matrices: [(-3, 5),( 2, 4)] Verify that (a d j\ A)A=|A|I=A(a d j\ A) for the above matrices.

Find the matrix A such that |A|=2\ a n d\ a d j(A)=[(2, 2, 0),( 2, 5, 1),( 0, 1, 1)]

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find adjoint of the matrice in[1-1 2 2 3 5-2 0 1]

    Text Solution

    |

  3. Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

    Text Solution

    |

  4. Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" |1-1 2 3 0-...

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[2 1 3 4-1 0-7 2 1]

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x- y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I3=O ...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix, then det(A^(-1)) is equal to det(A) (...

    Text Solution

    |