Home
Class 12
MATHS
For the matrix A=[1 1 1 1 2-3 2-1 3] . S...

For the matrix `A=[1 1 1 1 2-3 2-1 3]` . Show that `A^3-6A^2+5A+11\ I_3=O` . Hence, find `A^(-1)` .

Text Solution

Verified by Experts

`A^(2)=A.A`
`=[{:(1,1,1),(1,2,-3),(2,-1,3):}][{:(1,1,1),(1,2,-3),(2,-1,3):}]`
`=[{:(4,2,1),(-3,8,-14),(7,-3,14):}]`
`"and "A^(3)=A^(2).A`
`=[{:(4,2,1),(-3,8,-14),(7,-3,14):}][{:(1,1,1),(1,2,-3),(2,-1,3):}]`
`=[{:(4+2+2,4+4-1,4-6+3),(-3+8-28,-3+16+14,-3-24-42),(7-3+28,7-6-14,7+9+42):}]=[{:(8,7,1),(-23,27,-69),(32,-13,58):}]`
`"Now L.H.S. =" A^(3)-6A^(2)+5A+11I`
`=[{:(8,7,1),(-23,27,-69),(32,-13,58):}]-6[{:(4,2,1),(-3,8,-14),(7,-3,14):}]`
`+5[{:(1,1,1),(1,2,-3),(2,-1,3):}]+11[{:(1,0,0),(0,1,0),(0,0,1):}]`
`[{:(8-24+5+11,7-12+5+0,1-6+5=0),(-23+18+5+0,27-48+10+11,-69+84-15+0),(32=42+10+0,-13+18-5+0,58-84+15+11):}]`
`=[{:(0,0,0),(0,0,0),(0,0,0):}]=O=R.H.S.`
`"Now |A|=[{:(1,1,1),(1,2,-3),(2,-1,3):}]`
=1(6-3)-1(3+6)+1(-1-4)
` =3-9-5=11ne0`
`therefore A^(-1)`exists.
`"Now "A^(3)-6A^(2)+5A+11I=-O`
`rArr A^(-1)(A^(3)-6A^(2)+5A+11I)=A^(-1).O`
`rArr" "A^(2)-6A+5I+11A^(-1)=O`
`rArr" "-11A^(-1)=A^(2)-6A+5I`
`=[{:(4,2,1),(1,1,1),(7,-3,14):}]-6[{:(1,1,1),(1,2,-3),(2,-1,3):}]+5[{:(1,0,0),(0,1,0),(0,0,1):}]`
`=[{:(4-6+5,2-6+0,1-6+0),(-3-6+0,8-12+5,-14+18+0),(7-12+0,-3+6+0,14-18+5):}]`
`=[{:(3,-4,-5),(-9,1,4),(-5,3,1):}]=A^(-1)=-1/11[{:(3,-4,-5),(-9,1,4),(-5,3,1):}]`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[(3, 1),(-1 ,2)] , show that A^2-5A+7I=O . Hence, find A^(-1) .

If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find A^(-1) .

If A=[(3, 1),( 1, 2)] , show that A^2-5A+5I=0 . Hence, find A^(-1) .

For the matrix A=[[3 ,1],[ 7, 5]], find x and y sot that A^2+x I+y Adot=0 Hence, Find A^(-1)dot

For the matrix A=[[1,-1, 1],[ 2 ,3, 0 ],[18 ,2 ,10]] , show that A(a d j\ A)=O .

For the matrix A=[[3, 2],[ 1, 1]] , find the numbers a and b such that A^2+a A+b I=O . Hence, find A^(-1) .

If A=[(2,-3),(3,4)], show the A^2-6A+17I=0. Hence find A^-1

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

If A=[{:(1,-1),(2,3):}] , shown that A^(2)-4A+5I=o . Hence Find A^(-1) .

Show that the matrix, A=[[1, 0,-2],[-2,-1, 2],[ 3, 4, 1]] satisfies the equation, A^3-A^2-3A-I_3=O . Hence, find A^(-1) .

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find adjoint of the matrice in[1-1 2 2 3 5-2 0 1]

    Text Solution

    |

  3. Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

    Text Solution

    |

  4. Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" |1-1 2 3 0-...

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[2 1 3 4-1 0-7 2 1]

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x- y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I3=O ...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix, then det(A^(-1)) is equal to det(A) (...

    Text Solution

    |