Home
Class 12
MATHS
If A is an invertible matrix, then de...

If `A` is an invertible matrix, then `det(A^(-1))` is equal to `det(A)` (b) `1/(det(A))` (c) 1 (d) none of these

Text Solution

Verified by Experts

The correct Answer is:
(b)

`AA^(-1)=I`
`rArr" |A A^(-1)|=|I|=1rArr|A||A^(-1)|=1`
`rArr" "|A^(-1)|=1/|A| rArr det(A^(-2))=1/(det(A))`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to(a) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to (A) det (A) (B) 1/(det(A) (C) 1 (D) 0

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is an invertble matrix of order 2 then (det A ^-1) is equal to- a.det A b.1/ det A c. 1 d. 0

‘A’ is any square matrix, then det |A-A^T| is equal to :

If A is an invertible matrix, then (a d jdotA)^(-1) is equal to a. a d jdot(A^(-1)) b. A/(d e tdotA) c. A d. (detA)A

A square matrix A is invertible if det(A) is equal to (A) -1 (B) 0 (C) 1 (D) none of these

if A is a square matrix such that A^(2)=A, then det (A) is equal to

If B is a non-singular matrix and A is a square matrix, then det (B^(-1) AB) is equal to (A) det (A^(-1)) (B) det (B^(-1)) (C) det (A) (D) det (B)

NAGEEN PRAKASHAN ENGLISH-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find adjoint of the matrice in[1-1 2 2 3 5-2 0 1]

    Text Solution

    |

  3. Verify A (a d j A) = (a d j A) A = |A|I for [(2 ,3),(-4,-6)]

    Text Solution

    |

  4. Verify A" "(a d j" "A)" "=" "(a d j" "A)" "A" "=" "|A|"I" |1-1 2 3 0-...

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[2 1 3 4-1 0-7 2 1]

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=|[3, 2], [7, 5]| and B=|[6 ,7], [8, 9]| , verify that (A B)^(-1)=...

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x- y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I3=O ...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix, then det(A^(-1)) is equal to det(A) (...

    Text Solution

    |