Home
Class 10
MATHS
In DeltaABC,angleB=90^(@) , if AB=5cm, B...

In `DeltaABC,angleB=90^(@)` , if `AB=5cm, BC=12` cm , then find the vlaues of the following :
(a) Sin A
(b) Cos A
(c) cot A
(d)cosec C
( e) sec C
(f) tan C

Text Solution

AI Generated Solution

To solve the problem step by step, we will first find the length of side AC using the Pythagorean theorem, and then we will calculate the required trigonometric ratios. ### Step 1: Find the length of AC using the Pythagorean theorem. In triangle ABC, where angle B is 90 degrees, we can use the Pythagorean theorem: \[ AC^2 = AB^2 + BC^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|29 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC, angleB=90^(@),AB=24cmandAC =26cm then find the values of the following : (i) tanA (ii) cot C (iii) cosC (iv) sinC (v) cosecA (vi) sec A

In DeltaABC,angleA=0=90^(@),AB=6cmandAC=8cm , then find the values of the following : (i) sinB (ii)sinA (iii) tanB (iv)secB (v)cotC (vi) "cosec" C

In DeltaABC, angleB=90^(@), angleA=30^(@), b=20cm , find a and c.

Delta ABC is right-angled at C. If AC = 5 cm and BC = 12 cm find the length of AB.

In DeltaABC, if AB=5cm, BC=13cm and CA=12cm, then the distance to vertex 'A' from the side BC is (in cm)

In triangle ABC, angleB = 90^@ and tan A = 0.75 If AC = 30 cm, find the lengths of AB and BC.

In DeltaABC , angleA is right - angled . If AB= 1 cm , AC =3 cm and BC = sqrt(10) cm , then find the values of cos B and sin C.

In Delta ABC , angle B = 90 ^(@) Evaluate : cosec A cos C - sin A sec C .

In a △ABC , right angled at B , AB=24cm , BC=7cm . Determine sin C,cos C

In an isosceles triangle ABC. AB = BC = 10 cm and BC = 18 cm . Find the value of : sin ^(2) B + cos ^(2) C