Home
Class 10
MATHS
If x=rsinAcosC ,\ \ y=rsinAsinC and z=rc...

If `x=rsinAcosC ,\ \ y=rsinAsinC` and `z=rcosA` , prove that `r^2=x^2+y^2+z^2`

Text Solution

AI Generated Solution

To prove that \( r^2 = x^2 + y^2 + z^2 \) given \( x = r \sin A \cos C \), \( y = r \sin A \sin C \), and \( z = r \cos A \), we will follow these steps: ### Step 1: Write the expressions for \( x^2 \), \( y^2 \), and \( z^2 \) We start by squaring each of the expressions: \[ x^2 = (r \sin A \cos C)^2 = r^2 \sin^2 A \cos^2 C ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|29 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x^(2) + y^(2) + z^(2) = r^(2)

If x=rsinthetacosvarphi , y=rsinthetasinvarphi and z=rcostheta , then (a) x^2+y^2+z^2=r^2 (b) x^2+y^2-z^2=r^2 (c) x^2-y^2+z^2=r^2 (d) z^2+y^2-x^2=r^2

If y is the mean proportional between x and z, prove that : (x^(2) - y^(2) + z^(2))/(x^(-2) - y^(-2) + z^(-2)) = y^(4) .

If x , y , z are in continued proportion, prove that : ((x + y)^(2))/((y + z)^(2)) = (x)/(z) .

if x , y and z are in continued proportion, prove that : x^(2) - y^(2) : x^(2) + y^(2) = x - z : x + z .

If sin −1 x+sin −1 y+sin −1 z=π, prove that x 1−x 2 ​ +y 1−y 2 ​ +z 1−z 2 ​ =2xyz.

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

If cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y+z= 3/2, then prove that x=y=z

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)