Home
Class 10
MATHS
If p sin^(3)alpha+qcos^(3)alpha=sinalpha...

If `p sin^(3)alpha+qcos^(3)alpha=sinalphacosalpha` and `p sinalpha - q cos alpha=0,` then prove that : `p^(2)+q^(2)=1`

Text Solution

Verified by Experts

`"p sin"alpha -qcosalpha=0`
`rArr p sin"alpha=qcosalpha` ...(1)
`:. "p sin" alpha+qcos^(3)alpha=sinalphacosalpha`
`rArr("p sina"alpha)sin^(2)alpha+qcos^(3)alpha=sinalphacosalpha`
`rArr(qcosalpha)sin^(2)alpha+qcos^(3)alpha=sinalphacosalpha` [from(1)]
`rArrqcosalpha(sin^(2)alpha+cos^(2)alpha)=sinalphacosalpha`
`rArr qcosalpha=sinalphacosalpha` (`:'sin^(2)alpha+cos^(2)alpha=1`)
`rArr q=sinalpha` ...(2)
Put `q=sinalpha` in equation (1)
`"p sin"alpha=sinalphacosalpha`
`rArrp=cosalpha` ...(3)
Now , `p^(2)+q^(2)=cosalpha+sinalpha=1`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|29 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If sin^2(theta-alpha)c osalpha=cos^2(theta-alpha)sinalpha=msinalphacosalpha, then prove that |m|geq1/(sqrt(2))

If p and p' are the distances of the origin from the lines x "sec" alpha + y " cosec" alpha = k " and " x "cos" alpha-y " sin" alpha = k "cos" 2alpha, " then prove that 4p^(2) + p'^(2) = k^(2).

If sin^2(theta-alpha)c a salpha=cos^2(theta-alpha)sinalpha=msinalphacosalpha, then prove that |m|geq1/(sqrt(2))

If sin A + cos A = p and sec A + cosec A = q , then prove that : q(p^(2) - 1) = 2 p

If the line ax+ by =1 passes through the point of intersection of y =x tan alpha + p sec alpha, y sin(30^@-alpha)-x cos (30^@-alpha) =p , and is inclined at 30^@ with y=tan alpha x , then prove that a^2 + b^2 = 3/(4p^2) .

If the line ax+ by =1 passes through the point of intersection of y =x tan alpha + p sec alpha, y sin(30^@-alpha)-x cos (30^@-alpha) =p , and is inclined at 30^@ with y=tan alpha x , then prove that a^2 + b^2 = 3/(4p^2) .

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

If sinalpha, sin^2alpha, 1 , sin^4alpha and sin^6alpha are in A.P., where -pi < alpha < pi, then alpha lies in the interval

Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha