Home
Class 10
MATHS
If secalpha-tanalpha=p and cosec alpha+c...

If `secalpha-tanalpha=p` and `cosec alpha+cotalpha=q`, then express p in terms of q and also q in terms p.

Text Solution

Verified by Experts

We have ,
`secalpha=p+tanalpharArrsec^(2)alpha=(p+tanalpha)^(2)`
`rArr1+tan^(2)alpha=p^(2)+tan^(2)alpha+2ptanalpha`
`rArrtanalpha=(1-p^(2))/(2p)` …(1)
Also , `"cosec" alpha=q-cotalpharArr"cosec"^(2)alpha=(q-cotalpha)^(2)`
`1+cot^(2)alpha=q^(2)+cot^(2)alpha=2pcotalpha`
`cotalpha=(q^(2)-1)/(2p)rArrtanalpha=(2q)/(q^(2)-1)` ...(2)
From equations (1) and (2), we get
`(1-p^(2))/(2p)=(2p)/(q^(2)-1)`
`rArrq^(2)-1-p^(2)q^(2)+p^(2)=4pq`
`rArrp^(2)q^(2)+1+2pq=q^(2)+p^(2)-2pq`
`rArr(pq+1)^(2)=(q-p)^(2)`
`rArrpq+1=+-(q-p)`
`rArrpq+1=q-p`
`rArrp(q+1)=q-1`
`rArrp=(q-1)/(q+1)`
and `q(p-1)=-p-1`
`rArrq=(1+p)/(1-p)`
`rArrpq+1=-q+p`
`rArrp(q-1)=q-1`
`rArrp=(1+q)/(1-q)`
and `q(p+1)=p-1`
`:.q=(p-1)/(p+1)`
So , if `p=(q-1)/(q+1)`,then`q=(1+p)/(1-p)`
and if `p=(1+q)/(1-q)` ,then `q=(p-1)/(p+1)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|29 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If (1)/(p+q)=r and pne-q . What is p in terms of r and q?

Given : sin theta = p/q , find cos theta + sin theta in terms of p and q.

If p+2sqrt(x-1)=q , and q > p , what is x-1 in terms of p and q ?

If secalpha and cosecalpha are the roots of the equation x^2-px+q=0 , then (i) p^2=q(q-2) (ii) p^2=q(q+2) (iii) p^2+q^2=2q (iv) none of these

If tan 6 theta=p/q find the value of (1)/(2)(p cosec 2 theta-q sec 2 theta) terms of p and q.

If sintheta+costheta=pandsectheta+"cosec"theta=q then prove that q(p^(2)-1)=2p .

Q. Let p and q real number such that p!= 0 , p^2!=q and p^2!=-q . if alpha and beta are non-zero complex number satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha/beta and beta/alpha as its roots is

Let p and q be real numbers such that p!=0,p^3!=q ,and p^3!=-qdot If alpha and beta are nonzero complex numbers satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha//beta and beta//alpha as its roots is A. (p^3+q)x^2-(p^3+2q)x+(p^3+q)=0 B. (p^3+q)x^2-(p^3-2q)x+(p^3+q)=0 C. (p^3+q)x^2-(5p^3-2q)x+(p^3-q)=0 D. (p^3+q)x^2-(5p^3+2q)x+(p^3+q)=0

in a G.P (p+q)th term = m and (p-q) th term = n , then find its p th term