Home
Class 10
MATHS
If 0^(@)ltalphalt90^(@), then solve th...

If `0^(@)ltalphalt90^(@)`, then solve the equation `(sinalpha)/(1-cosalpha)+(sinalpha)/(1+cosalpha)=4`.

Text Solution

Verified by Experts

`(sinalpha)/(1-cosalpha)+(sinalpha)/(1+cosalpha)=4`
`rArr(sinalpha(1+cosalpha)+sinalpha(1-cosalpha))/((1-cosalpha)(1+cosalpha))=4`
`rArr(sinalpha+sinalphacosalpha+sinalpha=sinalphacosalpha)/(1-cos^(2)alpha)=4`
`rArr(2sinalpha)/(sin^(2)alpha)=4`
`rArr(2)/(sinalpha)=4`
`rArrsinalpha=(1)/(2)=sin30^(@)`
`rArralpha=30^(@)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|29 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If 5tanalpha=4 , show that (5sinalpha-3cosalpha)/(5sinalpha+2cosalpha)=1/6

Prove that (sinalpha)/(1+cosalpha)+(1+cosalpha)/(sin alpha)=2"cosec "alpha .

Find the amplitude of sinalpha+i(1-cosalpha)

If 0ltalphalt pi/4 equation (x-sinalpha)(x-cosalpha)-2=0 has (A) both roots in (sinalpha, cosalpha) (B) both roots in (cosalpha, sinalpha) (C) one root in (-oo, cosalpha) and other in (sinalpha, oo) (D) one root in (-oo,sinalpha) and other in (cosalpha, oo)

Givent that pi/2 lt alphaltpi then the expression sqrt((1-sinalpha)/(1+sinalpha))+sqrt((1+sinalpha)/(1-sinalpha)) (A) 1/(cosalpha) (B) - 2/(cosalpha) (C) 2/(cosalpha) (D) does not exist

If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to

Evaluate the following: |[cosalpha, sinalpha],[sinalpha, cosalpha]|

Evaluate Delta=|0sinalpha-cosalpha-sinalpha0sinbetacosalpha-sinbeta0|

Find the inverse of [(1, 0, 0),( 0,cosalpha,sinalpha),(0,sinalpha,-cosalpha)]

(sinalpha + cosalpha)(tanalpha + cotalpha) = secalpha + cosecalpha