Home
Class 10
MATHS
Prove that (i)sin(40^(@)-theta)-cos...

Prove that
(i)`sin(40^(@)-theta)-cos(50^(@)+theta)=0`
(ii) `sec(65^(@)+theta)-"cosec"(25^(@)-theta)=0`

Text Solution

AI Generated Solution

To prove the given equations, we will work through each part step by step. ### Part (i): Prove that \( \sin(40^\circ - \theta) - \cos(50^\circ + \theta) = 0 \) **Step 1:** Start with the left-hand side of the equation. \[ \sin(40^\circ - \theta) - \cos(50^\circ + \theta) \] ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Problems From NCERT/exemplar|29 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Prove that : (i) sinthetacos(90^(@)-theta)+sin(90^(@)-theta)costheta=1 (ii) sectheta" cosec"(90^(@)-theta)-tanthetacot(90^(@)-theta)=1 (iii) (sintheta*sec(90^(@)-theta)cot(90^(@)-theta))/("cosec"(90^(@)-theta)*costheta*tantheta)-(tan(90^(@)-theta))/(cottheta)=0 (iv) (1+sin(90^(@)-theta))/(cos(90^(@)-0))+(cos(90^(@)-theta))/(1+sin(90^(@)-0))=2"cosec"theta

i) sec(theta) = cos(theta)

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

Prove that : (sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2

Prove that (cos(90^(@)+theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cosec(-theta)cos(270^(@)-theta)tan(180^(@)+theta))

(sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)"cosec"(90^(@)+theta)) .

Prove that 1-cos^(2)theta-sin^(2)theta=0

Show that: sin (40^(@) + theta) cos (10^(@) + theta) -cos(40^(@) + theta) sin (10^(@) + theta) = (1)/(2)

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)