Home
Class 10
MATHS
Evaluate : (sin^(2)30^(@)+sin^(2)45^(@)-...

Evaluate : `(sin^(2)30^(@)+sin^(2)45^(@)-4cot^(2)60^(@))/(2sin30^(@)cos30^(@)+(1)/(2)tan60^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{\sin^2 30^\circ + \sin^2 45^\circ - 4 \cot^2 60^\circ}{2 \sin 30^\circ \cos 30^\circ + \frac{1}{2} \tan 60^\circ} \] we will follow these steps: ### Step 1: Calculate \(\sin^2 30^\circ\) \[ \sin 30^\circ = \frac{1}{2} \implies \sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 2: Calculate \(\sin^2 45^\circ\) \[ \sin 45^\circ = \frac{1}{\sqrt{2}} \implies \sin^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \] ### Step 3: Calculate \(\cot^2 60^\circ\) \[ \cot 60^\circ = \frac{1}{\tan 60^\circ} = \frac{1}{\sqrt{3}} \implies \cot^2 60^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] Thus, \[ 4 \cot^2 60^\circ = 4 \times \frac{1}{3} = \frac{4}{3} \] ### Step 4: Substitute values into the numerator Now substituting the values we calculated into the numerator: \[ \text{Numerator} = \frac{1}{4} + \frac{1}{2} - \frac{4}{3} \] To combine these fractions, we need a common denominator. The least common multiple of 4, 2, and 3 is 12. \[ \frac{1}{4} = \frac{3}{12}, \quad \frac{1}{2} = \frac{6}{12}, \quad \frac{4}{3} = \frac{16}{12} \] Thus, \[ \text{Numerator} = \frac{3}{12} + \frac{6}{12} - \frac{16}{12} = \frac{9 - 16}{12} = \frac{-7}{12} \] ### Step 5: Calculate \(2 \sin 30^\circ \cos 30^\circ\) \[ \sin 30^\circ = \frac{1}{2}, \quad \cos 30^\circ = \frac{\sqrt{3}}{2} \] Thus, \[ 2 \sin 30^\circ \cos 30^\circ = 2 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] ### Step 6: Calculate \(\tan 60^\circ\) \[ \tan 60^\circ = \sqrt{3} \] Thus, \[ \frac{1}{2} \tan 60^\circ = \frac{1}{2} \times \sqrt{3} = \frac{\sqrt{3}}{2} \] ### Step 7: Substitute values into the denominator Now substituting the values we calculated into the denominator: \[ \text{Denominator} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3} \] ### Step 8: Final calculation Now we can substitute the numerator and denominator into the original expression: \[ \frac{\text{Numerator}}{\text{Denominator}} = \frac{\frac{-7}{12}}{\sqrt{3}} = \frac{-7}{12\sqrt{3}} \] ### Final Answer Thus, the final answer is: \[ \frac{-7}{12\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 C|50 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 D|6 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8a|20 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : sin ^(2)60^(@)tan 45^(@)- cos^(2)45^(@)sec 60^(@)

(5cos^(6)60^(@)+4sec^(2)30^(@)-tan^(2)45^(@))/(sin^(2)30^(@)+cos^(2)30^(@))

Show that : 2tan^(2)60^(@)-6(sin^(2)45^(@)-tan^(2)30^(@))=5

Find the value of : sin^(2)30^(@)+cos^(2)30^(@)+cot^(2)45^(@)

Find the value of : sin^(2)30^(@)+cos^(2)30^(@)+cot^(2)45^(@)

Prove that : cos^(2)30^(@)-sin^(2)30^(@)=cos60^(@)

Prove that : cos^(2)30^(@)-sin^(2)30^(@)=cos60^(@)

Find the value of (sin30^(@))/(cos^(2)45^(@))-tan^(2)60^(@)+3cos90^(@)+sin0^(@) .

Evaluate : (i) sin^(2)30^(@)-2cos^(3)60^(@)+3tan^(4)45^(@) (ii) (cos0^(@)+sin45^(@)+sin30^(@))(sin90^(@)-cos45^(@)+cos60^(@))

Prove that : sin60^(@)=2sin30^(@)cos30^(@) .

NAGEEN PRAKASHAN ENGLISH-INTRODUCTION TO TRIGONOMETRY-Exercise 8 B
  1. Find the value of 2sin30^(@)cos30^(@).

    Text Solution

    |

  2. Show that : 2tan^(2)60^(@)-6(sin^(2)45^(@)-tan^(2)30^(@))=5

    Text Solution

    |

  3. Find the vlaue of 4sin^(2)30^(@)+tan^(2)60^(@)+sec^(2)45^(@).

    Text Solution

    |

  4. Find the value of (sin30^(@))/(cos^(2)45^(@))-tan^(2)60^(@)+3cos90^(@)...

    Text Solution

    |

  5. Evaluate : (sin^(2)30^(@)+sin^(2)45^(@)-4cot^(2)60^(@))/(2sin30^(@)cos...

    Text Solution

    |

  6. (2tan3 0^(@))/(1-tan^2 3 0^(@))

    Text Solution

    |

  7. Show that : cos^(2)60^(@)-sin^(2)60^(@)=-sin30^(@)

    Text Solution

    |

  8. (2tan3 0^(@))/(1-tan^2 3 0^(@))

    Text Solution

    |

  9. Show that : cos30^(@)=sqrt((1+cos60^(@))/(2))

    Text Solution

    |

  10. Evaluate : (tan45^(@))/(2sin30^(@)-cos60^(@))

    Text Solution

    |

  11. If A=30^@ verify that cos3A=4cos^3A-3cosA

    Text Solution

    |

  12. If A =45^(@),then show that : cos 2A=cos^(2)A-sin^(2)A

    Text Solution

    |

  13. Given A=60^(@) and B=30^(@), prove that : cos(A+B)=cosAcosB-sinAsinB

    Text Solution

    |

  14. If A =30^(@),then show that : tan2A=(2tanA)/(1-tan^(2)A)

    Text Solution

    |

  15. If tanA=1,then find the value of sin^(2)A+cos^(2)A+cotA.

    Text Solution

    |

  16. If costheta=(sqrt(3))/(3), then find the value of sin3theta.

    Text Solution

    |

  17. If tan(A+B)=sqrt(3)andsin(A-B)=(1)/(2),then find the value of tan (2A-...

    Text Solution

    |

  18. If cos(A+B)=0andsin(A-B)=(sqrt(3))/(2)then find the value of tan(A-3B)...

    Text Solution

    |

  19. If A+B=90^(@)andtanA=sqrt(3), then find the value of B.

    Text Solution

    |

  20. If A-B=30^(@)andsinA=(sqrt(3))/(2),then find the value of B.

    Text Solution

    |