Home
Class 10
MATHS
If costheta=(15)/(17), then find the val...

If `costheta=(15)/(17)`, then find the value of `sintheta`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\sin \theta\) given that \(\cos \theta = \frac{15}{17}\), we can follow these steps: ### Step 1: Understand the relationship between sine and cosine We know that in a right triangle, the cosine of an angle is defined as the ratio of the length of the adjacent side (base) to the length of the hypotenuse. Similarly, the sine of the angle is defined as the ratio of the length of the opposite side (perpendicular) to the hypotenuse. ### Step 2: Set up the triangle Let’s denote the sides of the triangle: - Let the base (adjacent side) be \(15x\). - Let the hypotenuse be \(17x\). ### Step 3: Use the Pythagorean theorem According to the Pythagorean theorem: \[ \text{(Hypotenuse)}^2 = \text{(Base)}^2 + \text{(Perpendicular)}^2 \] Substituting the known values: \[ (17x)^2 = (15x)^2 + (AB)^2 \] This simplifies to: \[ 289x^2 = 225x^2 + (AB)^2 \] ### Step 4: Solve for the perpendicular side (AB) Rearranging the equation gives: \[ (AB)^2 = 289x^2 - 225x^2 \] \[ (AB)^2 = 64x^2 \] Taking the square root of both sides, we find: \[ AB = 8x \] ### Step 5: Calculate \(\sin \theta\) Now, we can find \(\sin \theta\): \[ \sin \theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{AB}{AC} = \frac{8x}{17x} \] The \(x\) cancels out: \[ \sin \theta = \frac{8}{17} \] ### Final Answer Thus, the value of \(\sin \theta\) is \(\frac{8}{17}\). ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 D|6 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 B|22 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

If cottheta=(12)/(5) ,then find the value of sintheta*sectheta+costheta*"cosec"theta .

If tantheta=(4)/(3) , then find the value of (3sintheta-2costheta)/(3sintheta+5costheta)

If cos e c\ theta=(13)/(12) , find the value of (2sintheta-3\ cos\ theta)/(4sintheta-9costheta)

(i) If tantheta=(a)/(b) ,then find the value of (2sintheta-3costheta)/(2sintheta+3costheta)

If 3sintheta+4costheta =5 then find the value of: 4sintheta-3costheta

If tantheta=(a)/(b) ,then find the value of (costheta+sintheta)/(costheta-sintheta) .

If sintheta+ costheta=1 , then find the general value of theta .

If sintheta=(7)/(25) ,then find the value of sqrt((1-costheta)/(1+costheta)) .

If tantheta=a/b then find the value of (costheta+sintheta)/(costheta-sintheta)

If sintheta+costheta=1 , then the value of sin2theta is

NAGEEN PRAKASHAN ENGLISH-INTRODUCTION TO TRIGONOMETRY-Exercise 8 C
  1. Prove that : (i) (1)/(1+tan^(2)theta)+(1)/(1+cot^(2)theta)=1 ...

    Text Solution

    |

  2. If costheta=(15)/(17), then find the value of sintheta.

    Text Solution

    |

  3. Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0...

    Text Solution

    |

  4. Prove that 1+tan^2A/(1+secA)=secA

    Text Solution

    |

  5. Prove that : (cot A - 1)/ (2 - sec^(2) A) = (cot A)/ (1 + tan A)

    Text Solution

    |

  6. Prove that tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

    Text Solution

    |

  7. Prove that (tanA+cotA)^(2)="cosec"^(2)A+sec^(2)A.

    Text Solution

    |

  8. Prove that : (sec^(2)A-1)("cosec"^(2)A-1)=1

    Text Solution

    |

  9. Prove the following identities: cosec^4A-sec^2A=tan^4A+tan^2A

    Text Solution

    |

  10. Prove that : (i) tan^(2)A-sin^(2)A=tan^(2)A*sin^(2)A (i...

    Text Solution

    |

  11. Prove that : (1-tan^(2)theta)/(cot^(2)theta-1)=tan^(2)theta

    Text Solution

    |

  12. Prove that : (sectheta-tantheta)^(2)=(1-sintheta)/(1+sintheta)

    Text Solution

    |

  13. Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)t...

    Text Solution

    |

  14. Prove that : (sinA+cosA)^(2)+(sinA-cosA)^(2)=2

    Text Solution

    |

  15. Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

    Text Solution

    |

  16. Prove that : (i) (1-cosA)/(sinA)=(sinA)/(1+cosA) (ii) ...

    Text Solution

    |

  17. Prove that : (1+sintheta)/(costheta)+(costheta)/(1+sintheta)=2secthe...

    Text Solution

    |

  18. Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec...

    Text Solution

    |

  19. Prove that : (i) (1)/(1-cosA)+(1)/(1+cosA)=2"cosec"^(2)A " " (...

    Text Solution

    |

  20. Prove that : (i) (1)/(sectheta-tantheta)+(1)/(sectheta+tantheta)=2se...

    Text Solution

    |