Home
Class 10
MATHS
Solve the following equations for 0^(@)l...

Solve the following equations for `0^(@)lethetale90^(@)` :
(i) `2cos^(2)theta=(1)/(2)`
(ii) `4sin^(2)theta-3=0`
(iii) `sin^(2)theta-(1)/(2)sintheta=0`
(iv) `tan^(2)theta-(sqrt(3)+1)tantheta+sqrt(3)=0`
(v) `sintheta-costheta=0`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the equations step by step. ### (i) Solve `2cos^(2)theta = (1)/(2)` 1. Start with the equation: \[ 2\cos^2\theta = \frac{1}{2} \] 2. Divide both sides by 2: \[ \cos^2\theta = \frac{1}{4} \] 3. Take the square root of both sides: \[ \cos\theta = \pm \frac{1}{2} \] 4. Since we are looking for solutions in the range \(0^\circ \leq \theta \leq 90^\circ\), we only consider the positive value: \[ \cos\theta = \frac{1}{2} \] 5. Find the angle: \[ \theta = 60^\circ \] ### (ii) Solve `4sin^(2)theta - 3 = 0` 1. Start with the equation: \[ 4\sin^2\theta - 3 = 0 \] 2. Rearrange to isolate \(\sin^2\theta\): \[ 4\sin^2\theta = 3 \] 3. Divide both sides by 4: \[ \sin^2\theta = \frac{3}{4} \] 4. Take the square root of both sides: \[ \sin\theta = \pm \frac{\sqrt{3}}{2} \] 5. Again, in the range \(0^\circ \leq \theta \leq 90^\circ\), we only consider the positive value: \[ \sin\theta = \frac{\sqrt{3}}{2} \] 6. Find the angle: \[ \theta = 60^\circ \] ### (iii) Solve `sin^(2)theta - (1)/(2)sintheta = 0` 1. Start with the equation: \[ \sin^2\theta - \frac{1}{2}\sin\theta = 0 \] 2. Factor out \(\sin\theta\): \[ \sin\theta(\sin\theta - \frac{1}{2}) = 0 \] 3. Set each factor to zero: - \(\sin\theta = 0\) gives \(\theta = 0^\circ\) - \(\sin\theta - \frac{1}{2} = 0\) gives \(\sin\theta = \frac{1}{2}\) 4. Find the angle for \(\sin\theta = \frac{1}{2}\): \[ \theta = 30^\circ \] 5. Thus, the solutions are: \[ \theta = 0^\circ, 30^\circ \] ### (iv) Solve `tan^(2)theta - (sqrt(3)+1)tantheta + sqrt(3) = 0` 1. Let \(y = \tan\theta\), rewrite the equation: \[ y^2 - (\sqrt{3} + 1)y + \sqrt{3} = 0 \] 2. Use the quadratic formula: \[ y = \frac{-(\sqrt{3} + 1) \pm \sqrt{(\sqrt{3} + 1)^2 - 4\sqrt{3}}}{2} \] 3. Calculate the discriminant: \[ (\sqrt{3} + 1)^2 - 4\sqrt{3} = 3 + 2\sqrt{3} + 1 - 4\sqrt{3} = 4 - 2\sqrt{3} \] 4. Solve for \(y\): \[ y = \frac{\sqrt{3} + 1 \pm \sqrt{4 - 2\sqrt{3}}}{2} \] 5. Find the values of \(\theta\) corresponding to \(y = 1\) and \(y = \sqrt{3}\): - \(\tan\theta = 1\) gives \(\theta = 45^\circ\) - \(\tan\theta = \sqrt{3}\) gives \(\theta = 60^\circ\) 6. Thus, the solutions are: \[ \theta = 45^\circ, 60^\circ \] ### (v) Solve `sintheta - costheta = 0` 1. Start with the equation: \[ \sin\theta - \cos\theta = 0 \] 2. Rearrange to find: \[ \sin\theta = \cos\theta \] 3. Divide both sides by \(\cos\theta\) (assuming \(\cos\theta \neq 0\)): \[ \tan\theta = 1 \] 4. Find the angle: \[ \theta = 45^\circ \] ### Summary of Solutions: - (i) \( \theta = 60^\circ \) - (ii) \( \theta = 60^\circ \) - (iii) \( \theta = 0^\circ, 30^\circ \) - (iv) \( \theta = 45^\circ, 60^\circ \) - (v) \( \theta = 45^\circ \)
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 C|50 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following equation: sin3theta+cos2theta=0

Solve that following equations : 2cos^2theta+3sintheta=0

Solve the equation : "tan"^2theta+(1-sqrt(3))tantheta-sqrt(3)=0

Solve 3tan^(2) theta-2 sin theta=0 .

Solve each of the following equations when 0^0 < theta< 90^0 (i) 2costheta=1 (ii) 2cos^2theta=1/2

Solve the following equation: sintheta+sin2theta+sin3theta=0

Solve for theta(0^(@) lt theta lt 90^(@)) : sin^(2)theta-1/2sintheta=0

Solve for theta(0^(@) lt theta lt 90^(@)) : sin^(2)theta-1/2sintheta=0

Solve each of the following equations when 0 < theta<90 (i) 2sin^2theta=1/2 (ii) 3tan^2theta-1=0

Solve the following equation (i) 5cos2theta+2cos^(2)"(theta)/(2)+1=0 , -(pi)/(2) lt theta lt (pi)/(2) (ii) sin7theta+sin4theta+sintheta=0 , 0 le theta le pi (iii) tantheta+sectheta=sqrt(3) , 0 le theta le 2pi