Home
Class 10
MATHS
If 0^(@)lethetale90^(@) , then solve the...

If `0^(@)lethetale90^(@)` , then solve the following equations :
(i) `(costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4`
(ii) `(cos^(2)theta-3costheta+2)/(sin^(2)theta)=1`
(iii) `(costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given equations step by step. ### Given: 1. \( \frac{\cos \theta}{1 - \sin \theta} + \frac{\cos \theta}{1 + \sin \theta} = 4 \) 2. \( \frac{\cos^2 \theta - 3 \cos \theta + 2}{\sin^2 \theta} = 1 \) 3. \( \frac{\cos \theta}{\csc \theta + 1} + \frac{\cos \theta}{\csc \theta - 1} = 2 \) ### Solution: #### (i) Solve \( \frac{\cos \theta}{1 - \sin \theta} + \frac{\cos \theta}{1 + \sin \theta} = 4 \) 1. **Combine the fractions:** \[ \frac{\cos \theta (1 + \sin \theta) + \cos \theta (1 - \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)} = 4 \] This simplifies to: \[ \frac{\cos \theta (1 + \sin \theta + 1 - \sin \theta)}{1 - \sin^2 \theta} = 4 \] \[ \frac{2 \cos \theta}{\cos^2 \theta} = 4 \] 2. **Simplify the equation:** \[ \frac{2}{\cos \theta} = 4 \] \[ \cos \theta = \frac{1}{2} \] 3. **Find \( \theta \):** \[ \theta = \cos^{-1} \left(\frac{1}{2}\right) = 60^\circ \] #### (ii) Solve \( \frac{\cos^2 \theta - 3 \cos \theta + 2}{\sin^2 \theta} = 1 \) 1. **Multiply both sides by \( \sin^2 \theta \):** \[ \cos^2 \theta - 3 \cos \theta + 2 = \sin^2 \theta \] 2. **Use the identity \( \sin^2 \theta = 1 - \cos^2 \theta \):** \[ \cos^2 \theta - 3 \cos \theta + 2 = 1 - \cos^2 \theta \] \[ 2 \cos^2 \theta - 3 \cos \theta + 1 = 0 \] 3. **Factor the quadratic equation:** \[ (2 \cos \theta - 1)(\cos \theta - 1) = 0 \] 4. **Solve for \( \cos \theta \):** \[ 2 \cos \theta - 1 = 0 \quad \Rightarrow \quad \cos \theta = \frac{1}{2} \quad \Rightarrow \quad \theta = 60^\circ \] \[ \cos \theta - 1 = 0 \quad \Rightarrow \quad \cos \theta = 1 \quad \Rightarrow \quad \theta = 0^\circ \] #### (iii) Solve \( \frac{\cos \theta}{\csc \theta + 1} + \frac{\cos \theta}{\csc \theta - 1} = 2 \) 1. **Convert \( \csc \theta \) to \( \frac{1}{\sin \theta} \):** \[ \frac{\cos \theta}{\frac{1}{\sin \theta} + 1} + \frac{\cos \theta}{\frac{1}{\sin \theta} - 1} = 2 \] 2. **Combine the fractions:** \[ \frac{\cos \theta \sin \theta}{1 + \sin \theta} + \frac{\cos \theta \sin \theta}{1 - \sin \theta} = 2 \] \[ \frac{\cos \theta \sin \theta (1 - \sin \theta) + \cos \theta \sin \theta (1 + \sin \theta)}{(1 - \sin \theta)(1 + \sin \theta)} = 2 \] \[ \frac{2 \cos \theta \sin \theta}{\cos^2 \theta} = 2 \] 3. **Simplify the equation:** \[ \frac{2 \sin \theta}{\cos \theta} = 2 \] \[ \tan \theta = 1 \] 4. **Find \( \theta \):** \[ \theta = 45^\circ \] ### Summary of Solutions: - From (i): \( \theta = 60^\circ \) - From (ii): \( \theta = 0^\circ \) or \( 60^\circ \) - From (iii): \( \theta = 45^\circ \)
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 E|16 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 C|50 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Solve the following equation: sin^2theta-costheta=1/4

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

Solve the following equation: costheta+sintheta=cos2theta+sin2theta

Prove: (costheta)/(cos e c\ theta+1)+(costheta)/(cos e c\ theta-1)=2tantheta

Prove the following identities: (sin^3theta+cos^3theta)/(sintheta+costheta)+sinthetacostheta=1

Prove that : (sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)

Prove that: (i) (costheta)/(1-sintheta)=(1+sintheta)/(costheta) (ii) (1+costheta-sin^(2)theta)/(sintheta+sinthetacostheta)=cottheta (iii) 1+(tan^(2)theta)/(1+sectheta)=sectheta

(sintheta)/(1+costheta) is equal to (a) (1+costheta)/(sintheta) (b) (1-costheta)/(costheta) (c) (1-costheta)/(sintheta) (d) (1-sintheta)/(costheta)

(1+costheta+sintheta)/(1+costheta-sintheta)=(1+sintheta)/(costheta)

Prove that : (1-costheta)/(sintheta)+(sintheta)/(1-costheta)=2"cosec "theta