Home
Class 10
MATHS
Without using trigonometric tables , eva...

Without using trigonometric tables , evaluate :
(i) `(sin40^(@))/(cos50^(@))+(3tan50^(@))/(cot40^(@))`
(ii) `(sec37^(@))/("cosec "53^(@))-(tan20^(@))/(cot70^(@))`
(iii) `(cos74^(@))/(sin16^(@))+(sin12^(@))/(cos78^(@))-sin18^(@)sec72^(@)`
(iv) `sin35^(@)sec55^(@)+(4sec32^(@))/("cosec "58^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the given expressions step by step without using trigonometric tables. ### (i) Evaluate: \[ \frac{\sin 40^\circ}{\cos 50^\circ} + \frac{3 \tan 50^\circ}{\cot 40^\circ} \] **Step 1:** Rewrite \(\cos 50^\circ\) using the co-function identity: \[ \cos 50^\circ = \sin(90^\circ - 50^\circ) = \sin 40^\circ \] Thus, we can rewrite the first term: \[ \frac{\sin 40^\circ}{\cos 50^\circ} = \frac{\sin 40^\circ}{\sin 40^\circ} = 1 \] **Step 2:** Rewrite \(\tan 50^\circ\) and \(\cot 40^\circ\): \[ \tan 50^\circ = \frac{\sin 50^\circ}{\cos 50^\circ} \quad \text{and} \quad \cot 40^\circ = \frac{1}{\tan 40^\circ} = \frac{\cos 40^\circ}{\sin 40^\circ} \] Thus: \[ \frac{3 \tan 50^\circ}{\cot 40^\circ} = 3 \tan 50^\circ \cdot \tan 40^\circ = 3 \cdot \frac{\sin 50^\circ}{\cos 50^\circ} \cdot \frac{\sin 40^\circ}{\cos 40^\circ} \] **Step 3:** Using the identity \(\tan(90^\circ - \theta) = \cot \theta\): \[ \tan 50^\circ = \cot 40^\circ \Rightarrow \tan 50^\circ \cdot \cot 40^\circ = 1 \] Thus: \[ \frac{3 \tan 50^\circ}{\cot 40^\circ} = 3 \] **Step 4:** Combine the results: \[ 1 + 3 = 4 \] ### Final Answer for (i): \[ 4 \] --- ### (ii) Evaluate: \[ \frac{\sec 37^\circ}{\csc 53^\circ} - \frac{\tan 20^\circ}{\cot 70^\circ} \] **Step 1:** Rewrite \(\csc 53^\circ\): \[ \csc 53^\circ = \frac{1}{\sin 53^\circ} = \frac{1}{\cos(90^\circ - 53^\circ)} = \frac{1}{\sin 37^\circ} \] Thus: \[ \frac{\sec 37^\circ}{\csc 53^\circ} = \sec 37^\circ \cdot \sin 37^\circ = \frac{1}{\cos 37^\circ} \cdot \sin 37^\circ = \tan 37^\circ \] **Step 2:** Rewrite \(\tan 20^\circ\) and \(\cot 70^\circ\): \[ \cot 70^\circ = \tan(90^\circ - 70^\circ) = \tan 20^\circ \] Thus: \[ \frac{\tan 20^\circ}{\cot 70^\circ} = \frac{\tan 20^\circ}{\tan 20^\circ} = 1 \] **Step 3:** Combine the results: \[ \tan 37^\circ - 1 \] ### Final Answer for (ii): \[ 0 \] --- ### (iii) Evaluate: \[ \frac{\cos 74^\circ}{\sin 16^\circ} + \frac{\sin 12^\circ}{\cos 78^\circ} - \sin 18^\circ \sec 72^\circ \] **Step 1:** Rewrite \(\cos 74^\circ\) and \(\sin 16^\circ\): \[ \cos 74^\circ = \sin(90^\circ - 74^\circ) = \sin 16^\circ \] Thus: \[ \frac{\cos 74^\circ}{\sin 16^\circ} = \frac{\sin 16^\circ}{\sin 16^\circ} = 1 \] **Step 2:** Rewrite \(\cos 78^\circ\): \[ \cos 78^\circ = \sin(90^\circ - 78^\circ) = \sin 12^\circ \] Thus: \[ \frac{\sin 12^\circ}{\cos 78^\circ} = \frac{\sin 12^\circ}{\sin 12^\circ} = 1 \] **Step 3:** Rewrite \(\sec 72^\circ\): \[ \sec 72^\circ = \frac{1}{\cos 72^\circ} = \frac{1}{\sin(90^\circ - 72^\circ)} = \frac{1}{\sin 18^\circ} \] Thus: \[ \sin 18^\circ \sec 72^\circ = \sin 18^\circ \cdot \frac{1}{\sin 18^\circ} = 1 \] **Step 4:** Combine the results: \[ 1 + 1 - 1 = 1 \] ### Final Answer for (iii): \[ 1 \] --- ### (iv) Evaluate: \[ \sin 35^\circ \sec 55^\circ + \frac{4 \sec 32^\circ}{\csc 58^\circ} \] **Step 1:** Rewrite \(\sec 55^\circ\): \[ \sec 55^\circ = \frac{1}{\cos 55^\circ} = \frac{1}{\sin(90^\circ - 55^\circ)} = \frac{1}{\sin 35^\circ} \] Thus: \[ \sin 35^\circ \sec 55^\circ = \sin 35^\circ \cdot \frac{1}{\sin 35^\circ} = 1 \] **Step 2:** Rewrite \(\csc 58^\circ\): \[ \csc 58^\circ = \frac{1}{\sin 58^\circ} = \frac{1}{\cos(90^\circ - 58^\circ)} = \frac{1}{\cos 32^\circ} \] Thus: \[ \frac{4 \sec 32^\circ}{\csc 58^\circ} = 4 \cdot \frac{1}{\cos 32^\circ} \cdot \sin 58^\circ = 4 \] **Step 3:** Combine the results: \[ 1 + 4 = 5 \] ### Final Answer for (iv): \[ 5 \] --- ### Summary of Answers: 1. \(4\) 2. \(0\) 3. \(1\) 4. \(5\) ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 D|6 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Without using a trigonometric table calculate: 4(sin32^(@))/(cos58^(@))+5(tan48^(@))/(cot42^(@))-8(sec72^(@))/(cosec18^(@))

Without using trigonometric tables , evaluate : (i) (sin11^(@))/(cos79^(@)) (ii) (sec15^(@))/("cosec"75^(@)) (iii) (tan54^(@))/(cot36^(@)) (iv) (cos68^(@))/(sin22^(@)) (v) ("cosec"24^(@))/(sec66^(@)) (vi) (cot18^(@))/(tan72^(@))

Evaluate (sin35^(@))/(cos55^(@))+(sec20^(@))/("cosec"70^(@)) .

Without using trigonometric tables , evaluate : ((tan20^(@))/(cosec70^(@)))^(2)+((cot20^(@))/(sec70^(@)))^2+2tan 15^(@)tan37^(@)tan53^(@)tan60^(@)tan75^(@)

Without using trigonometric tables evaluate. ("sin"65^(@))/("cos"25^(@))+("cos"32^(@))/("sin"58^(@))-"sin"28^(@)."sec"62^(@)+"cosec"^(2)30^(@)

Evaluate: (cos 55^(@))/(sin 35^(@))+(cot 35^(@))/(tan 55^(@))

Evaluate the following : (i) (sin58^(@))/(cos32^(@)) (ii) (sec42^(@))/("cosec"48^(@)) (iii) (tan37^(@))/(cot53^(@))

Evaluate : (sec 42^(@))/( cosec 48^(@)) + ( 3 tan 50 ^(@))/( cot 40 ^(@)) - ( 2 cos 43 ^(@))/( sin 47^(@))

using trigonometric tables evaluate the following : (cot 30^(@))/(sec 30^(@)) + ("cosec 30"^(@))/(tan 45^(@)) - (2 cos 0^(@))/(sin 30^(@)) + cos^(2) 45^(@)

Without using trigonometric tables, evaluate. "sin"^(2)34^(@)+"sin"^(2)56^(@)+2" tan"18^(@)"tan"72^(@)-"cot"^(2)30^(@)