Home
Class 10
MATHS
Evaluate : sin^(2)25^(@)+sin^(2)65^(@)+...

Evaluate : `sin^(2)25^(@)+sin^(2)65^(@)+sqrt(3)tan5^(@)tan15^(@)tan30^(@)tan75^(@)tan85^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \sin^2 25^\circ + \sin^2 65^\circ + \sqrt{3} \tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ \), we can follow these steps: ### Step 1: Rewrite \( \sin^2 65^\circ \) We know that \( \sin(90^\circ - \theta) = \cos(\theta) \). Therefore, we can rewrite \( \sin^2 65^\circ \) as: \[ \sin^2 65^\circ = \sin^2 (90^\circ - 25^\circ) = \cos^2 25^\circ \] ### Step 2: Combine \( \sin^2 25^\circ \) and \( \sin^2 65^\circ \) Now, we can combine \( \sin^2 25^\circ \) and \( \sin^2 65^\circ \): \[ \sin^2 25^\circ + \sin^2 65^\circ = \sin^2 25^\circ + \cos^2 25^\circ \] Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we get: \[ \sin^2 25^\circ + \cos^2 25^\circ = 1 \] ### Step 3: Rewrite the tangent terms Next, we rewrite the tangent terms. We have: \[ \tan 75^\circ = \tan(90^\circ - 15^\circ) = \cot 15^\circ \] \[ \tan 85^\circ = \tan(90^\circ - 5^\circ) = \cot 5^\circ \] Thus, we can express the product of tangents as: \[ \tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ = \tan 5^\circ \tan 15^\circ \tan 30^\circ \cot 15^\circ \cot 5^\circ \] ### Step 4: Simplify the tangent product Using the identity \( \tan \theta \cot \theta = 1 \): \[ \tan 15^\circ \cot 15^\circ = 1 \quad \text{and} \quad \tan 5^\circ \cot 5^\circ = 1 \] Thus, we have: \[ \tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ = \tan 30^\circ \] ### Step 5: Substitute \( \tan 30^\circ \) We know that \( \tan 30^\circ = \frac{1}{\sqrt{3}} \). Therefore: \[ \sqrt{3} \tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ = \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1 \] ### Step 6: Combine the results Now, we can combine our results: \[ \sin^2 25^\circ + \sin^2 65^\circ + \sqrt{3} \tan 5^\circ \tan 15^\circ \tan 30^\circ \tan 75^\circ \tan 85^\circ = 1 + 1 = 2 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 D|6 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: cos^(2)25^(@)-sin^(2)65^(@)-tan^(2)45^(@)

Evaluate : 2((cos65^(@))/(sin25^(@)))-(tan20^(@))/(cot70^(@))-sin90^(@)+tan5^(@)tan35^(@)tan60^(@)tan55^(@)tan85^(@)

tan 75 ^(@) - tan 30^(@)- tan 75^(@) tan 30^(@) =1.

Show that: tan 10^(@)tan 15^(@) tan 75^(@)tan 80^(@)=1

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

Evaluate : tan 25^(@) tan 65 ^(@) - cot 25^(@) cot 65^(@)

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2

Evaluate : (tan45^(@))/(2sin30^(@)-cos60^(@))

Evaluate : tan7^(@)tan23^(@)tan60^(@)tan67^(@)tan83^(@)+(cot54^(@))/(tan36^(@))+sin20^(@)sec70^(@)-2

Without using trigonometric tables, evaluate. "sin"^(2)34^(@)+"sin"^(2)56^(@)+2" tan"18^(@)"tan"72^(@)-"cot"^(2)30^(@)