Home
Class 10
MATHS
Evaluate : tan7^(@)tan23^(@)tan60^(@)ta...

Evaluate : `tan7^(@)tan23^(@)tan60^(@)tan67^(@)tan83^(@)+(cot54^(@))/(tan36^(@))+sin20^(@)sec70^(@)-2`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \tan 7^\circ \tan 23^\circ \tan 60^\circ \tan 67^\circ \tan 83^\circ + \frac{\cot 54^\circ}{\tan 36^\circ} + \sin 20^\circ \sec 70^\circ - 2 \), we will follow these steps: ### Step 1: Rewrite the tangent terms using complementary angles We know that \( \tan(90^\circ - \theta) = \cot \theta \). Therefore, we can rewrite some of the tangent terms: - \( \tan 67^\circ = \tan(90^\circ - 23^\circ) = \cot 23^\circ \) - \( \tan 83^\circ = \tan(90^\circ - 7^\circ) = \cot 7^\circ \) Now, we can rewrite the expression: \[ \tan 7^\circ \tan 23^\circ \tan 60^\circ \cot 23^\circ \cot 7^\circ + \frac{\cot 54^\circ}{\tan 36^\circ} + \sin 20^\circ \sec 70^\circ - 2 \] ### Step 2: Simplify the tangent and cotangent products From the expression, we can see that: - \( \tan 23^\circ \) and \( \cot 23^\circ \) will cancel each other out. - \( \tan 7^\circ \) and \( \cot 7^\circ \) will also cancel each other out. Thus, we are left with: \[ \tan 60^\circ + \frac{\cot 54^\circ}{\tan 36^\circ} + \sin 20^\circ \sec 70^\circ - 2 \] ### Step 3: Evaluate \( \tan 60^\circ \) We know that: \[ \tan 60^\circ = \sqrt{3} \] ### Step 4: Simplify \( \frac{\cot 54^\circ}{\tan 36^\circ} \) Using the identity \( \cot \theta = \frac{1}{\tan \theta} \), we have: \[ \cot 54^\circ = \frac{1}{\tan 54^\circ} \] And since \( \tan 54^\circ = \cot 36^\circ \), we can write: \[ \frac{\cot 54^\circ}{\tan 36^\circ} = \frac{1/\tan 54^\circ}{\tan 36^\circ} = \frac{1}{\tan 54^\circ \tan 36^\circ} \] Using the identity \( \tan(90^\circ - \theta) = \cot \theta \), we find: \[ \tan 54^\circ = \cot 36^\circ \] Thus: \[ \frac{\cot 54^\circ}{\tan 36^\circ} = 1 \] ### Step 5: Simplify \( \sin 20^\circ \sec 70^\circ \) We know that: \[ \sec 70^\circ = \frac{1}{\cos 70^\circ} = \frac{1}{\sin 20^\circ} \] Thus: \[ \sin 20^\circ \sec 70^\circ = \sin 20^\circ \cdot \frac{1}{\sin 20^\circ} = 1 \] ### Step 6: Combine all parts Now, substituting back into the expression gives: \[ \sqrt{3} + 1 + 1 - 2 = \sqrt{3} \] ### Final Answer Thus, the final answer is: \[ \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Very Short Answer Questions|38 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Short Answer Questions|1 Videos
  • INTRODUCTION TO TRIGONOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 8 D|6 Videos
  • CONSTRUCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 11 B|10 Videos
  • LINEAR EQUATIONS IN TWO VARIABLES

    NAGEEN PRAKASHAN ENGLISH|Exercise Revision Exercise Long Answer Questions|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

Evaluate : tan7^0tan23^0tan60^0tan67^0tan83^0

Shown that : tan48^(@)tan23^(@)tan42^(@)tan67^(@)=1

Evaluate (tan60^(@)-tan30^(@))/(1+tan60^(@)tan30^(@)) .

(tan8 0^(@)-tan1 0^(@))/tan70^(@)

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

Evaluate: (cot 54^(@))/(tan 36^(@))+(tan 20^(@))/(cot 70^(@))-2

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

Prove that: tan10^(@)tan50^(@)+tan50^(@)tan70^(@)+tan70^(@)tan170^(@)=3

Find the value of : tan30^(@)tan60^(@)